CLIMATE CHANGE AND INVASION: DOES A LOSS OF ECOLOGICAL INTEGRITY AFFECT THE CULTURAL EXPRESSION OF AN INDIGENOUS CULTURE?

Valerie A. Small, Ph.D.
Wolf Mountain Environmental
INTRODUCTION

• Biological diversity—manifestation of ecosystem health
• Invasive plant species threatens ecosystem function
• Riparian zones—vulnerable
• River regulation/diversions (dams)
 – Invasive plants may threaten indigenous rituals/ceremonies due to:
 • Outcompete native plant species
 • Reducing availability to harvest plants for cultural use
RIPARIAN ECOSYSTEMS

• Plant survivorship—complex riparian
 Historical native vegetation
 Salicaceae Populus deltoides L. Plains cottonwood
 Salix sp. Willow
 Natural flow of rivers—now regulated
 Divergent Dams—irrigation
 Removing flood pulse = lack of recruitment sites
 Milk and Marias River
 decline in native woody vegetation
Populus deltoides subsp. monilifera (plains cottonwood)

- Dominant component of riparian ecosystems
- Riparian ecosystems (only native forested environments)
- Essential habitat (82% avian species)
- Cultural significance not addressed
- Harvested for ceremonial purposes
 - Crow Tribal members
Populus deltoides (contd.)

• Seed dispersal-wind
• Germination success (small)
• Declined (Pearce & Smith 2009)
 – seed/seedling mortality
 – Lack of recruitment sites
 – agriculture--draining floodplains
Cultural Significance
Plains Cottonwoods

• Historical
 – Battle of Little Big Horn

• Contemporary practices
 – Sweatlodge
 – Sacred Sundance Ceremony
 – Annual Crow Fair
 – Traditional gathering of native plants
PLAINS COTTONWOOD CULTURAL USE
RUSSIAN OLIVE INVASION IN PASTURES
STUDY SPECIES
RUSSIAN OLIVE (*ELAEAGNUS ANGUSTIFOLIA* L.)

- Invasive woody shrub/small tree
- Agriculture development post-Dawes Act 1887
- Planted within floodplains
- Crow-IECCC
Elaeagnus angustifolia L.
Russian Olive

- Shade tolerant
- Flood/drought tolerant
- Fixes Nitrogen
- Asexual/sexual reproduction
- Seed longevity (drupes)
- Dispersal – bird/mammal/water
- Pathogens/herbivores absent
- Difficult to control/eradicate
RESEARCH QUESTIONS/ METHODOLOGY

QUESTIONS
• What is the current distribution of Russian olive along Little Bighorn/Bighorn Rivers and floodplains?
• Will near-term climate change influence the spread of Russian olive?
• What is the current estimated size structure of cottonwood?

METHODS
• Mapped presence points
• Maximum Entropy Model (MaxEnt)
• NIISS
• 7.32m circular plots (n = 10)
• Near/far ceremonial sites
• Interviews with Elders
 – Distance to travel
 – Availability perceptions
Mapped Russian olive
(Elaeagnus angustifolia L.)
Climate Predictor Variables Used As Environmental Layers In MaxEnt Model

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Annual Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Temperature: Warmest Month</td>
<td>Precipitation: Wettest Month</td>
</tr>
<tr>
<td>Enhanced Vegetation Index</td>
<td>Mean Temperature: Coldest Quarter</td>
</tr>
<tr>
<td>Precipitation: Driest Month</td>
<td>Frequency of Precipitation</td>
</tr>
<tr>
<td>Precipitation: Wettest Quarter</td>
<td>Annual Mean Temperature</td>
</tr>
<tr>
<td>Isothermality</td>
<td>Mean Temperature: Driest Quarter</td>
</tr>
<tr>
<td>Mean Temperature: Wettest Quarter</td>
<td>Precipitation: Warmest Quarter</td>
</tr>
<tr>
<td>Mean Temperature: Coldest Quarter</td>
<td>Enhanced Vegetation Index/ Mean</td>
</tr>
<tr>
<td>Precipitation: Coldest Quarter</td>
<td>Precipitation Seasonality</td>
</tr>
<tr>
<td>Mean Diurnal Range</td>
<td>Precipitation: Driest Quarter</td>
</tr>
<tr>
<td>Annual Grow Days</td>
<td>Minimum Temperature: Coldest Month</td>
</tr>
</tbody>
</table>
Results
MaxEnt Model
<table>
<thead>
<tr>
<th>Plot Variables</th>
<th>Near Plots</th>
<th>Far Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.41</td>
<td>0.77</td>
</tr>
<tr>
<td>Variance</td>
<td>7.24</td>
<td>6.34</td>
</tr>
<tr>
<td>Df</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P (T<=t) two-tail 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P (T<=t) one-tail 0.001</td>
</tr>
</tbody>
</table>
RESULTS (CONTD.)

PLOT DATA--DBH

Cottonwood Stems-DBH
Near vs. Far

of STEMS vs. Diameter at breast height (cm)

NEAR
FAR
INTERVIEW RESULTS

- The maximum distance harvest >
- 80 km to 8.0 km for all size classes 25 ybp
- Present-day mean maximum ~ 98 km, greatest = 193 km
- 82% travel to harvest sapling size (3.6-4.5m) class stems > within 25 years
- Support plot data
- All size classes affected
CONCLUSIONS

- Russian olive continued spread
- Cottonwood (other species) continue to decline
- Climate change—hasten effects (increased precip/temps)
- Threatens cultural integrity and ecological biodiversity
- Management plans
 - mitigation of *E. angustifolia*
 - Planting of cottonwoods/willows in buffer zones
LINKING CULTURE, ECOLOGY AND POLICY: THE INVASION OF RUSSIAN-OLIVE (*ELAEAGNUS ANGUSTIFOLIA* L.) ON THE CROW INDIAN RESERVATION, SOUTH-CENTRAL MONTANA, USA
American Indian Land Policy: Land Use, Ownership Status and the Density of The Invasive Russian Olive (*Elaeagnus Angustifolia* L.) On The Crow Indian Reservation, Montana, USA

Chapter 3: Losing Tradition: The Biocultural Effects of Russian Olive (*Elaeagnus Angustifolia* L.) On The Crow Indian Reservation, Montana, USA