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The NASA Land Information System (LIS) modeling suite

L D7

Land surface parameter pmr_:essing Model evaluation and benchmarking
DA/OPTUE preprocessing Hydrological products (drought
Downscaling support C?ﬂ dej " :
Forcing adjustments (bias correction) Sy ) <)
Restart/ensemble generation = SNoy jULE?’ Vic @;&’ ;
ij?, FLJ S‘qd/ @ﬂﬁ
54,4, e, ol
Meteorological data
(NLDAS, MERRA,
GPM, ECMWF,..)
RT,
Ms (Cp

Land surface Data Toolkit iﬁﬁtﬁ?ﬁﬁﬁi
(LDT)

Land surface Verification
Toolkit (LVT)

e LIS consists of a large suite of land surface models (Noah, Noah-MP, CLM, JULES, Catchment, VIC, ...) and
data assimilation algorithms (EnKF, EnKS, ..) and support for remote sensing data (SMAP, SMOS, AMSR?2,
ASCAT, AMSR-E, SSM/I, SMMR, ....).

e LVT includes the support of in-situ (SCAN, USDA, NASMD, ISMN, ...), remote sensing and model/analysis
datasets for model benchmarking and evaluation.
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Impact of soil moisture DA on drought
estimates (May 10-17, 2011).

¥ The data assimilation capabilities in LIS is being leveraged for the next
phases of NLDAS to enable the “DA” in NLDAS.

Y The univariate data assimilation experiments demonstrated that
assimilation of soil moisture, snow and terrestrial water storage
observations are helpful in improving water cycle components of soil
moisture, snow, terrrestrial water storage and evapotranspiration.

Soil Moisture

Y These Improvements also translated to short-term improvements for
applications such as drought monitoring.
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Using In-situ soll moisture data to quantify sources of uncertainty in LSMs
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¥ Model simulations compared to a
statistical benchmark derived from out-
of-sample regressions of SCAN In-situ
soll moisture data.

& Uncertainty quantified using
Information-theory metrics.

& Largest sources of uncertainty are the
model parameters.

& Benchmarking to help understand
where to spend efforts on improving
model estimates.

Nearing. et al. (2016), Benchmarking NLDAS?2 soil moisture and evaporation to separate uncertainty contributions, J. Hydrometeor., 17(3), 745-759.




Soll moisture memory

@ soil moisture, due to its memory can be described as a first and error

order Markov process (red noise)
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Value of remote sensing data assimilation

Human impacts from expansion of agriculture and infrastructure have significantly (>50%)
transformed the natural features of the land surface

| and surface models :

_ _ Remote sensing:
fairly utopian; hard to

practical method to
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Challenges in remote sensing and simulation of irrigation
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D The skill of the passive microwave soil moisture retrievals In
detecting features of large-scale seasonal irrigation was mixed, with
ASCAT retrievals more effective than SMOS and AMSR2 products.
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Unitless degree of difference between the
remote sensing product and a model simulation
that lacks irrigation

Kumar, S.V. et al. (2015), Evaluating the utility of modern soil moisture remote sensing retrievals over irrigated areas and the suitability of data assimilation
methods for incorporating unmodeled artifacts, HESS, 19, 4463—4478.




Needs/Gaps/Requirements

¢ Lack of “observability” of soil moisture estimates, due to model
representations, sensing depth differences, model biases. Most soil moisture
comparisons are in the “wetness” space. It becomes hard to establish a “true”
soil moisture reference.

Representation soil moisture over human managed landscapes
(timing/magnitude of irrigation/agricultural practices).

Representativeness issues between the grid-scale model and point-scale in-situ
data Is a big problem. Similar to the efforts in the flux community, can NSMN
produce a gridded reference soil moisture data?

Land surface models provide high-quality soil moisture estimates (Anomaly R
~ 0.6 -0.8) when forced with good quality precipitation. The NLDAS estimates
can be used as an additional input for the National Soil Moisture Network.

Near real-time reference soil moisture data Is required for evaluation of
operational NLDAS runs.
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