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The organic soils in eastern North Carolina have a complex composition and are often found in 

regions with subtle but meaningful terrain differences.  These soils can burn and smolder easily, even 

several feet underground.  Because of this, existing measures of near-surface dryness and fire risk such 

as drought indices and National Fire Danger Rating System parameters have traditionally been viewed 

as poor indicators of fire and smoldering risk in organic soils.  A further investigation of organic fire risk 

indicators was conducted as part of this NIDIS-funded project. 

One commonly used fire risk 

parameter is the Keetch-Byram Drought 

Index (KBDI), which estimates dryness in 

the uppermost eight inches of the soil.  

KBDI has historically been available only 

at RAWS-standard weather stations, so 

much of eastern North Carolina did not 

have direct coverage.  Using daily radar-

derived precipitation estimates from the 

National Weather Service and daily 

maximum temperature and annual average 

precipitation data from the PRISM dataset, 

a gridded KBDI dataset was created at 4 km resolution for the period beginning in March 2007. 

A comparison with the RAWS KBDI observations showed that the gridded data generally 

underestimates values, with annual maximum values 136.65 points lower in the gridded dataset, on 

average.  This difference is likely due to the underestimation of maximum temperatures in the PRISM 

dataset and/or a warm bias in RAWS temperature observations. 

Several gridded indices, including KBDI, daily precipitation, and the Standardized Precipitation 

Index (SPI) over one- to four-month periods, were then compared with fuel and soil moisture data from 

an experimental Estimated Smoldering Potential (ESP) dataset.  This ESP data was collected 

intermittently from 2012 to 2014 from three coastal stations in the Pocosin Lakes National Wildlife 

Gridded KBDI data for July 31, 2011 
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Refuge in Hyde County, in the Alligator River National Wildlife Refuge in Dare County, and near 

Green Swamp in Brunswick County.  The results showed that all three indices were only weakly 

correlated with the ESP data.  Separate comparisons using RAWS Energy Release Component (ERC) 

data using both fuel models G and O also showed only weak relationships with the soil moisture 

observations from the ERC dataset, as seen by the results in the table below. 

 Alligator River 

(n = 349) 

Allen Road 

(n = 278) 

Green Swamp 

(n = 51) 

Soil moisture vs. 1-month SPI 0.253 -0.075 0.833 

Soil moisture vs. 2-month SPI 0.483 -0.235 0.725 

Soil moisture vs. 3-month SPI 0.479 -0.316 0.648 

Soil moisture vs. 4-month SPI 0.391 -0.352 0.711 

Soil moisture vs. gridded daily precipitation 0.017 0.125 0.091 

Soil moisture vs. gridded KBDI 0.372 -0.331 -0.563 

Soil moisture vs. ERC (fuel model O) -0.116 -0.057 -0.254 

Soil moisture vs. ERC (fuel model G) 0.147 0.011 -0.217 

Correlation coefficients (r) for analyses with soil moisture data from ESP arrays and other gridded and point-based datasets. 

The weak correlations are likely because these indices cannot capture the terrain, drainage, and 

composition of organic soils.  To that extent, few to no existing indices can model this combination of 

environmental and non-meteorological characteristics.  Because of this, no single index based on current 

widely available data is likely to be a consistent indicator of organic fire risk.  A combination of 

monitoring recent NFDRS parameters to assess surface fuel burning, local soil sampling, and 

groundwater levels is recommended until further improvements are made. 

Additional research may suggest better options.  A study in progress by Jim Reardon (Rocky 

Mountain Research Station) and Gary Curcio (Montgomery Community College Prescribed Fire 

Training Center) is examining remotely sensed soil moisture data as an indicator of smoldering in 

organic soils.  The deployment of soil moisture probes across eastern North Carolina could also establish 

a reliable sensor network and provide a longer period of record than the ESP stations.  Along with 

providing a finer-scale monitoring network in this part of the state, this would allow for a more robust 

comparison with existing datasets to search for good indicators of organic fire risk. 

The gridded KBDI dataset should become a valuable monitoring tool, especially for assessing 

response and mop-up with lightning-caused fires, in non-organic regions since it provides local 

estimates between weather stations.  Additional evaluation of temperature datasets may suggest a more 

accurate option than the daily PRISM data.  If a daily relative humidity dataset was also found, gridded 

100-hour and 1000-hour fuel moisture and ERC datasets could also be created. 
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1. Introduction 

 

Eastern North Carolina has a history of large and intense wildfires on both privately 

owned timberland and protected areas such as the Pocosin Lakes National Wildlife Refuge.  

Beneath the canopy of pines and Atlantic cedar trees, and under the shrubs, grasses, and litter lies 

a layer of soil rich with organic content that plays an important factor in the wildfire 

susceptibility and intensity across this region (Reardon and Curcio, 2011). 

These organic soils, which reach depths of up to 12 feet in some parts of the slightly hilly 

pocosin region (Goodwin, 1989), can support long-lived and intense fires in the subsurface root 

zone.  Because these fires can burn so deeply underground, measures of near-surface dryness and 

fire risk are often not useful for evaluating the risk of fire or smoldering in organic soils.  For 

example, the Keetch-Byram Drought Index (KBDI) is an estimate of dryness only in the 

uppermost eight inches of soil, and has often been regarded as a poor indicator of coastal fire risk 

in North Carolina. 

This project sought to further evaluate KBDI as a measure of coastal fire risk using a 

newly developed gridded KBDI dataset.  Several other indices, including gridded precipitation, 

Standardized Precipitation Index, and Energy Release Component data, were also analyzed for 

their utility in assessing fire risk.  An experimental Estimated Smoldering Potential dataset from 

three coastal sites provided fuel moisture data to serve as a proxy for fire or smoldering risk. 

 

2. A Gridded KBDI Dataset 

 

John Keetch and George Byram, fire scientists at the US Forest Service, developed their 

namesake drought index as a way to estimate the moisture deficit in the soils and duff.  They 

established KBDI to have several characteristics that make it useful for fire risk monitoring.  Its 
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values vary continuously on a scale from 0 to 800, which gives an objective and detailed 

classification of local dryness.  These values also correspond to the depth of dryness in the soil, 

where a value of 0 indicates no dryness and a value of 800 indicates dryness to a depth of eight 

inches (Keetch and Byram, 1968).  Since KBDI is based on readily available weather parameters 

– the daily maximum temperature and total precipitation, and the annual average precipitation – 

it does not require sensors in the soil to make these estimates of the dryness. 

The KBDI value changes daily based on the recent rainfall and maximum temperature, 

which provides a basic accounting of the moisture gained through precipitation while 

discounting runoff and moisture lost to evapotranspiration.  Their KBDI model also follows a 

roughly sinusoidal annual pattern, reaching its annual minimum in the winter when fire risk is 

generally lowest and its maximum value in the summer. 

Through the Weather Information Management System (WIMS) managed by the 

National Wildfire Coordinating Group, KBDI values are calculated each day for Remote 

Automatic Weather Stations (RAWS), which are used for local condition monitoring across the 

country.  In 2012, the State Climate Office of North Carolina added additional stations including 

mesonet sites into WIMS for additional local fire risk monitoring purposes.  However, there are 

still gaps between stations that can make it difficult to estimate true local fire risk, especially 

during the spring and summer when small-scale convective precipitation can be highly localized. 

To ensure statewide availability of KBDI estimates, a gridded KBDI dataset was created 

using three components: daily precipitation data from the National Weather Service’s radar-

based and gauge-calibrated Advanced Hydrological Prediction Service (AHPS) dataset, and 

annual average precipitation and daily maximum temperature data from Oregon State’s PRISM 

(Parameter-elevation Relationships on Independent Slopes Model) dataset.  Both datasets are 

available for the continental United States at approximately 4 km spatial resolution. 

Using the calculation steps first described by Keetch and Byram, then later summarized 

by Janis et al. (2002), gridded KBDI values were calculated since March 1, 2005, which 

represents a date when the eastern half of the country was relatively drought-free, thus justifying 

a starting KBDI value of zero.  The analyses that follow used a start date of January 1, 2007, 

which gave additional spin-up time for the KBDI to go through two annual cycles, thereby 

adjusting to local differences in dryness during that time.  An example of a daily gridded KBDI 

map is shown in Figure 2.1. 
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To provide a sense of error in the calculations, gridded KBDI values were compared to 

historical RAWS observations from the State Climate Office’s Fire Weather Intelligence Portal.  

The station-based values were treated as the ground truth since they are manually verified by 

North Carolina Forest Service users in WIMS each day. 

KBDI observations were available at 40 RAWS stations across North Carolina for the 

period from January 2007 through September 2014.  Results of the comparison between the 

gridded and RAWS data are given in Table 2.1.  The average correlation between the RAWS 

data and gridded KBDI data was r = 0.778, with a standard deviation of σ = 0.066.  The main 

difference between datasets was a consistent underestimation of values in the gridded data 

compared to the RAWS data.  The average difference between daily values was 115.13 points, 

and the average difference between annual maximum values was 136.65 points, with the RAWS 

data having higher values in both cases. 

This cause of this discrepancy appears to be underestimation of the daily maximum 

temperatures in the PRISM dataset.  At a representative group of five coastal RAWS stations that 

had an average daily KBDI difference of 115.75 points, the average difference between daily 

maximum temperature values was 0.8°C, with the RAWS temperatures being higher than the 

PRISM estimates.  These differences affect the KBDI values most at higher temperatures 

because of the formulation of the KBDI Drought Factor calculation.  An 0.8°C difference 

between the PRISM and RAWS maximum temperatures on a day with a maximum temperature 

of 20°C comparatively increases the daily Drought Factor, and the KBDI, by about 0.7 points.  

That difference occurring on 200 days, which is the approximate number of days with 

temperatures at or above 20°C each year, would constitute at least a 136 point difference in 

KBDI values. 

Despite the differences in magnitudes between the gridded and RAWS KBDI data, both 

datasets showed similar overall patterns in values, so the gridded dataset should suffice for an 

initial comparison with the Estimated Smoldering Potential data.  In the future, another dataset to 

estimate daily maximum temperatures could be identified and used instead of the PRISM data.  

One possible option is NOAA’s Real-Time Mesoscale Analysis (RTMA) product, which is 

available on an hourly timescale.  As such, it would require aggregation to determine the daily 

maximum, and even that could still miss the true high temperature by a degree or two.  However, 

the RTMA dataset is higher resolution – 2.5 km rather than 4 km – and it appears to capture 



4 

 

more of the local differences that are especially prominent on warm days, as the example in 

Figure 2.2 reveals.  Another option worth exploring is the National Weather Service’s Gridded 

Model Output Statistics (MOS), also available at 2.5 km resolution for the continental United 

States. 

 

3. Fire Risk Indicators for Organic Soils 

 

Assessing fire risk in organic soils can be challenging because the risk factors rarely go 

just skin-deep.  Differences in terrain – the term ‘pocosin’ comes from an Algonquin word 

meaning “swamp on a hill” – affect the thickness and depth of the organic soil and root mat, and 

the fuel moisture also depends on groundwater levels.  None of these attributes are directly 

captured by KBDI or other drought indices (LeQuire, 2010), so they have historically not been 

seen as good measures of fire or smoldering risk in organic soils. 

There are few to no widespread ground-based measures of organic fire risk, such as fuel 

moisture sensors or probes, so finding a widely available existing index that is well-correlated 

with organic fuel moisture could provide useful insights about fire or smoldering risk even where 

no sensors are deployed. 

To evaluate potential datasets as indicators of fire risk in organic soils, they were 

compared to data from several experimental Estimated Smoldering Potential (ESP) arrays 

installed by Jim Reardon with the Rocky Mountain Research Station and Gary Curcio, formerly 

with the NC Forest Service and now with the Montgomery Community College Prescribed Fire 

Training Center.  This data was collected from three test sites across eastern North Carolina: one 

in the Alligator River National Wildlife Refuge in mainland Dare County, one off Allen Road in 

the Pocosin Lakes National Wildlife Refuge in Hyde County, and one in Green Swamp in 

Brunswick County.  A map of the three array locations and pocosin habitats in coastal North 

Carolina is shown in Figure 3.1. 

These three sites represent different local terrain and drainage: The Alligator River site is 

at low elevation and is considered a wet site, the Allen Road site is at higher elevation than the 

surrounding terrain and is considered a dry site, and the Green Swamp site is at moderate 

elevation compared to its surroundings. 
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 Data from these sites was available from March 2012 through April 2014, with 

observations generally reported every two hours.  Because of intermittent data transmission, 

none of the stations had a complete data record during this time period.  The data availability for 

each site is summarized in Figure 3.2. 

The parameters measured by each station included fuel moisture, soil moisture, and soil 

humidity (Reardon and Curcio, 2014).  The fuel moisture data was measured by Campbell 

Scientific CS-505 electronic fuel sticks, typically mounted 12 inches above the forest floor.  

These sensors provide measures of surface fuel drying but not moisture content within in the 

soils themselves.  The soil moisture data was monitored by Campbell Scientific CS-615 water 

content reflectometers within the muck soils.  The soil humidity data was measured by several 

prototype sensors that were ultimately found to be unreliable estimates of root mat soil moisture. 

The Estimated Smoldering Potential is based primarily on the local soil moisture content.  

ESP also depends on the local soil mineral content, but this value is essentially constant at each 

site and not an important factor in smoldering potential (Frandsen, 1997), making the fuel 

moisture content the critical variable. 

At the Green Swamp site, earlier studies found the soil had an average root mat fuel 

moisture content of about 200% compared to the oven-dried sample weight (Reardon et al., 

2007).  Empirical evidence from prescribed burns suggested that burning when fuel moisture was 

at or above 180% – or 90% of the long-term average – was relatively safe against prolonged 

smoldering.  Below 120% fuel moisture content – or 60% of the long-term average – burning 

was deemed to be high risk for sustained smoldering and costly mop-up (NC Forest Service, 

2009). 

Applying a similar logic to wildfires, it is reasonable to say that at low fuel moisture 

levels, the risk of a fire burning and smoldering in the root zone for prolonged periods is 

maximized, while at higher fuel moisture levels, the risk is lower.  These guidelines served as the 

basis for this analysis. 

For each ESP array, normalized fuel moisture and soil moisture values were calculated 

using the available data averaged over each day.  These values effectively represent the percent 

of normal, and assuming a constant mineral content, they could be interpreted as smoldering or 

fire risk estimates as described above.  The normalized fuel and soil moisture data were 
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compared with several other datasets to assess their suitability as indicators of fire or smoldering 

risk. 

 

3.1. SPI Analysis 

 

The Standardized Precipitation Index (SPI) quantifies the frequency of precipitation 

during a given time period – often the past one month, two months, etc. – over that same period 

in past years, so it is useful for both short-term and long-term drought monitoring.  Gridded SPI 

values on a daily timescale for periods ranging from one to four months were extracted for each 

ESP array location and compared to the daily normalized fuel and soil moisture. 

The results of the fuel moisture vs. SPI analysis are shown in Table 3.1.  There was no 

consistency among which time period showed the strongest correlation with the fuel moisture 

data, and the magnitudes of the correlation coefficients were low across the board; the strongest 

was r = 0.389 for a three-month SPI vs. normalized fuel moisture at the Green Swamp ESP 

Array. 

The correlations with soil moisture data, shown in Table 3.2, were even more mixed.  

The Green Swamp site had high correlations (r = 0.833 for one-month SPI) but also a limited 

period of record (n = 51 days).  The Allen Road site had negative correlations, and the Alligator 

River site had moderately positive ones.  Ultimately, no useful connections could be made 

between SPI and either fuel moisture or soil moisture data. 

 

3.2 Precipitation Analysis 

 

Gridded precipitation data from the NWS AHPS dataset was extracted for each ESP array 

location at time lags of zero to five days in the past.  The results of the fuel moisture vs. 

precipitation comparisons for each site are shown in Table 3.3.  These correlations were slightly 

greater than with the SPI data, with a maximum value of r = 0.438 for the Green Swamp ESP 

Array.  Correlations were greatest with a lag of zero days, or when considering precipitation 

falling on the same day as the fuel moisture was measured. 

The correlations between the soil moisture and precipitation data are shown in Table 3.4.  

Correlations were lower than for the fuel moisture analysis and near zero in most cases, but they 
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also did not drop off at non-zero time lags, suggesting that recent precipitation played a small 

role in influencing the local soil moisture. 

 

3.3 KBDI Analysis 

 

Gridded KBDI values were also extracted for each ESP array location at time lags of zero 

to five days in the past.  The results when compared with the normalized fuel moisture data are 

shown in Table 3.5.  Even the greatest correlations at a lag of zero days were low, with the 

maximum r values near -0.2.  The Green Swamp site had non-negative correlations, implying 

that higher KBDI values – and more dryness – were associated with higher fuel moisture.  This 

result may partially be due to a limited number of fuel moisture observations (n = 53) especially 

in the summertime, when KBDI values are highest. 

Results of the normalized soil moisture vs. KBDI analysis are given in Table 3.6.  

Correlation coefficients for the Allen Road site were slightly more negative than for the fuel 

moisture analysis (r = -0.331 vs. r = -0.217), and the Green Swamp site showed the strongest 

correlation (r = -0.563), but the Alligator River site showed positive correlations with KBDI, 

which is again a non-intuitive finding. 

 

3.4 ERC Analysis 

 

The Energy Release Component (ERC) is a fire behavior parameter available from 

National Fire Danger Rating System (NFDRS) guidance in WIMS.  It is commonly used for fire 

risk monitoring because it models the fuel load that may burn, particularly in larger and slower-

drying fuels, if a fire starts.  An ERC value multiplied by 25 gives the available energy in BTUs 

per square foot (Durango Interagency Dispatch, 2006).  Like other NFDRS parameters, ERC is 

calculated using weather data inputs.  In particular, ERC uses temperature, relative humidity, and 

precipitation data to model the drying in fuels. 

ERC also depends on the fuel model being used.  NFDRS offers 20 different fuel models 

that capture regional variations in vegetation and fuels.  Fuel model G, which applies to dense 

conifer stands with heavy litter accumulation, is the most commonly used model in North 

Carolina.  Many coastal sites also use fuel model O, which applies to pocosin regions with pine 
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stands and brushlike fuels.  The primary differences between these two models are the higher 

loading for the larger-diameter 100- and 1000-hour fuels in model G, a higher assumed heat 

content in BTUs per pound in model O, and a greater fuel bed depth – 4 feet vs. 1 foot – in 

model O (Bradshaw et al., 1983). 

Because ERC is not currently available as a gridded dataset, data from the closest RAWS 

station to each ESP array was used.  The closest station to the Alligator River ESP Array was the 

Dare Bomb Range RAWS site (NDBR), located 4.75 miles to the west.  For the Allen Road ESP 

Array, the closest station was the Pocosin Lakes RAWS site (NPOC), located 5.05 miles to the 

north.  And for the Green Swamp ESP Array, the Nature Conservancy RAWS site (NNAC), 

located 6.27 miles to the south, was used.  A map of these site locations is given in Figure 3.3. 

ERC data for both fuel models from all three RAWS stations was retrieved from WIMS 

and compared with the normalized fuel moisture data.  The results are shown in Table 3.7.  With 

a zero-day lag, the correlations were again maximized, and the magnitudes were the strongest of 

any analysis, all greater than 0.6.  The correlations with fuel model O were slightly stronger than 

those with fuel model G for the Alligator River and Allen Road sites.  At the Green Swamp site, 

fuel model G showed slightly higher correlations, but this may again be due to limited data 

availability (there were only 48 days with both ESP and ERC data) or local differences in soils.  

The ESP array on the northern edge of the Green Swamp is in an area of highly organic soils, 

while the Nature Conservancy RAWS site is in an area of more mineral-rich soils (Bucher and 

High, 2002). 

Correlations between normalized soil moisture and RAWS ERC data are shown in Table 

3.8.  Compared to the fuel moisture analyses, the correlations were lower across the board; the 

maximum zero-day-lag correlation for any site was just r = -0.254 for the Green Swamp ESP 

Array.  Correlations with fuel model G were non-negative for the Alligator River and Allen Road 

sites, which like the KBDI analysis does not match the expectations when comparing soil 

moisture to available energy. 

Overall, the results of this analysis were consistent with findings by Reardon and Curcio 

(2014) that ERC and other NFDRS parameters do not closely reflect burning conditions in 

organic soils.  In a set of research burns conducted under high ERC conditions, significant 

amounts of surface fuels burned, which is reflected by the strong correlations for the fuel 
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moisture vs. ERC analysis.  However, little to none of the organic soil was consumed during 

these burns, which matches the weak correlations from the soil moisture vs. ERC analysis. 

 

4. Summary 

 

The complex terrain, drainage, and composition of organic soils makes it difficult to 

assess the fire risk in those regions.  Neither existing drought indices such as KBDI and SPI nor 

precipitation alone can fully capture these local impacts to fuel or soil moisture.  When these 

indices miss the magnitude and timing of periods with heightened fire risk, as is sometimes the 

case with KBDI (LeQuire, 2010), it can have important implications for planning prescribed 

burns or allocating resources to potentially at-risk locations. 

Another NFDRS parameter – the Energy Release Component – was found to be well-

correlated with surface fuel moisture.  For these surface fuels, ERC is recommended as a good 

indicator of fire risk.  Fuel model O is optimal as it most closely fits the soil and vegetation 

characteristics of this region, but fuel model G also correlates well with observed fuel moisture 

values.  Monitoring for surface burning will also be improved with the new gridded KBDI 

dataset, which fills in gaps between existing RAWS stations, such as those shown in Figure 4.1, 

providing estimates where there is currently no coverage.  This gridded KBDI dataset could be 

improved with a more accurate gridded temperature dataset, and if a gridded relative humidity 

dataset was also identified, a gridded ERC dataset could be created. 

However, ERC was not strongly correlated with organic soil moisture collected from 

three experimental ESP arrays, which confirmed past findings that NFDRS parameters cannot 

capture the complexities in organic soils.  Non-meteorological factors such as groundwater levels 

and local terrain also play an important role in influencing local burning and smoldering 

conditions.  Because of this, no single index based on current widely available data is likely to be 

a consistent indicator of organic fire risk.  A combination of monitoring recent NFDRS 

parameters to assess surface fuel burning, local soil sampling, and groundwater levels is 

recommended until further improvements are made.  One study, currently in progress, is 

examining remotely sensed soil moisture data as an indicator of smoldering in organic soils 

(Reardon and Curcio, 2014). 
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Deployment of additional soil moisture probes across eastern North Carolina could also 

provide monitoring information, although this would still leave gaps between stations without 

relevant guidance.  However, establishing a reliable and accurate network of soil moisture 

sensors could eventually provide a sufficiently long period of record to cover several wet and dry 

periods.  This would allow for a more robust analysis than was possible with the limited ESP 

station data.  Past research at the State Climate Office has also linked experimental sensor data, 

such as leaf wetness observations, with more widely available fields such as relative humidity.  

Although organic fire risk has many more inputs than atmospheric moisture alone, having 

several years of observations from multiple sites could help identify these potential inputs, 

particularly for periods of high fire or smoldering risk. 

 Although they are not useful indicators of organic fire risk, it is possible that KBDI, ERC, 

and other drought or fire risk parameters are good indicators of other non-climatic environmental 

phenomena, such as estuarine salinity and dissolved oxygen content.  Similar to organic soil 

moisture and smoldering potential, ground-based observations of these parameters are limited, so 

identifying more widely available datasets that correlate well with these features would provide 

valuable insights to anyone researching or monitoring coastal water conditions.  Additional 

studies and research with regional partners could help identify the knowledge gaps and needs in 

these areas.  
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Table 2.1: Results of the comparison between KBDI data from the gridded dataset and 40 RAWS 

stations across North Carolina. 

Station

RAWS vs. Gridded 

Correlation

Avg. Difference 

Between Daily Values 

(Gridded - RAWS)

Avg. Difference Between 

Annual Maximum Values 

(Gridded - RAWS)

Number of 

Observations

N7MR 0.716 -135.99 -187.33 2676 (94.6%)

NBUS 0.644 -93.94 -241.93 2807 (99.2%)

NCHE 0.731 -121.30 -193.42 2510 (88.7%)

NCOW 0.751 -186.33 -288.25 2280 (80.6%)

NDAV 0.714 -79.44 -129.26 2655 (93.8%)

NGRF 0.804 -95.34 -163.62 2816 (99.5%)

NGUI 0.814 -73.28 -91.73 2489 (88%)

NHIG 0.646 -86.63 -235.06 2750 (97.2%)

NJCY 0.691 -206.14 -281.51 2758 (97.5%)

NNCP 0.774 -88.87 -118.68 2434 (86%)

NRUT 0.826 -106.36 -101.02 2718 (96%)

NTUS 0.834 -91.57 -119.04 2755 (97.3%)

NWAY 0.675 -46.34 -133.99 2455 (86.7%)

NRAV 0.820 -97.31 -161.64 2578 (91.1%)

NREN 0.803 -104.18 -159.95 2687 (94.9%)

NCAS 0.899 -92.47 -103.11 2730 (96.5%)

NDUK 0.904 -84.79 -59.97 2815 (99.5%)

NLEX 0.763 -161.25 -199.50 2814 (99.4%)

NTYL 0.821 -50.83 -81.79 2727 (96.4%)

NBAC 0.738 -145.48 -80.31 2755 (97.3%)

NDRO 0.738 -171.88 -169.34 2749 (97.1%)

NFBR 0.773 -140.61 -146.17 2822 (99.7%)

NHOF 0.756 -95.08 -46.82 2717 (96%)

NMTI 0.810 -136.20 -134.50 2787 (98.5%)

NNAC 0.864 -105.87 -39.82 2752 (97.2%)

NRCK 0.723 -179.42 -129.08 2681 (94.7%)

NSND 0.745 -116.36 -105.12 2787 (98.5%)

NSUN 0.862 -75.33 -37.43 2760 (97.5%)

NTUR 0.829 -133.21 -103.80 2783 (98.3%)

NUWH 0.866 -106.20 -144.89 2736 (96.7%)

NWHI 0.807 -127.75 -103.55 2731 (96.5%)

NBFT 0.753 -170.51 -147.68 2644 (93.4%)

NCRN 0.648 -83.85 -106.74 2644 (93.4%)

NDBR 0.740 -130.83 -213.35 2390 (84.5%)

NELI 0.790 -121.57 -143.60 2740 (96.8%)

NFAI 0.796 -66.51 -60.55 2762 (97.6%)

NFIN 0.766 -178.91 -178.65 2707 (95.7%)

NGRC 0.842 -118.68 -127.57 2757 (97.4%)

NNWB 0.823 -101.88 -88.44 2783 (98.3%)

NPOC 0.823 -96.57 -107.90 2814 (99.4%)

Average 0.778 -115.13 -136.65 2693.9 (95.2%)  
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Figure 2.1: Gridded KBDI data for July 31, 2011. 
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Figure 2.2: Comparison of PRISM daily maximum temperatures (left) and RTMA 1800 UTC 

temperatures (right) on June 30, 2015. 
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Table 3.1: Correlations for the normalized fuel moisture vs. daily SPI analysis. 

Correlation 

Coefficient r

Normalized Fuel Moisture vs. 1-month SPI 0.160

Normalized Fuel Moisture vs. 2-month SPI 0.138

Normalized Fuel Moisture vs. 3-month SPI 0.197

Normalized Fuel Moisture vs. 4-month SPI 0.205

Correlation 

Coefficient r

Normalized Fuel Moisture vs. 1-month SPI 0.119

Normalized Fuel Moisture vs. 2-month SPI -0.020

Normalized Fuel Moisture vs. 3-month SPI -0.079

Normalized Fuel Moisture vs. 4-month SPI -0.109

Correlation 

Coefficient r

Normalized Fuel Moisture vs. 1-month SPI -0.044

Normalized Fuel Moisture vs. 2-month SPI 0.366

Normalized Fuel Moisture vs. 3-month SPI 0.389

Normalized Fuel Moisture vs. 4-month SPI 0.241

Comparison

Alligator River ESP Array (n =349)

Comparison

Allen Road ESP Array (n =310)

Comparison

Green Swamp ESP Array (n =53)
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Table 3.2: Correlations for the normalized soil moisture vs. daily SPI analysis. 

Correlation 

Coefficient r

Normalized Soil Moisture vs. 1-month SPI 0.253

Normalized Soil Moisture vs. 2-month SPI 0.483

Normalized Soil Moisture vs. 3-month SPI 0.479

Normalized Soil Moisture vs. 4-month SPI 0.391

Correlation 

Coefficient r

Normalized Soil Moisture vs. 1-month SPI -0.075

Normalized Soil Moisture vs. 2-month SPI -0.235

Normalized Soil Moisture vs. 3-month SPI -0.316

Normalized Soil Moisture vs. 4-month SPI -0.352

Correlation 

Coefficient r

Normalized Soil Moisture vs. 1-month SPI 0.833

Normalized Soil Moisture vs. 2-month SPI 0.725

Normalized Soil Moisture vs. 3-month SPI 0.648

Normalized Soil Moisture vs. 4-month SPI 0.711

Comparison

Alligator River ESP Array (n =349)

Comparison

Allen Road ESP Array (n =278)

Comparison

Green Swamp ESP Array (n =51)

 

  



19 

 

Table 3.3: Correlations for the normalized fuel moisture vs. daily NWS AHPS precipitation 

analysis. 

Correlation 

Coefficient r

Normalized Fuel Moisture vs. Precip. (0 day lag) 0.348

Normalized Fuel Moisture vs. Precip. (1 day lag) 0.171

Normalized Fuel Moisture vs. Precip. (2 day lag) 0.055

Normalized Fuel Moisture vs. Precip. (3 day lag) 0.059

Normalized Fuel Moisture vs. Precip. (4 day lag) 0.041

Normalized Fuel Moisture vs. Precip. (5 day lag) 0.071

Correlation 

Coefficient r

Normalized Fuel Moisture vs. Precip. (0 day lag) 0.412

Normalized Fuel Moisture vs. Precip. (1 day lag) 0.120

Normalized Fuel Moisture vs. Precip. (2 day lag) 0.011

Normalized Fuel Moisture vs. Precip. (3 day lag) -0.007

Normalized Fuel Moisture vs. Precip. (4 day lag) -0.073

Normalized Fuel Moisture vs. Precip. (5 day lag) -0.145

Correlation 

Coefficient r

Normalized Fuel Moisture vs. Precip. (0 day lag) 0.438

Normalized Fuel Moisture vs. Precip. (1 day lag) 0.258

Normalized Fuel Moisture vs. Precip. (2 day lag) -0.043

Normalized Fuel Moisture vs. Precip. (3 day lag) -0.180

Normalized Fuel Moisture vs. Precip. (4 day lag) -0.190

Normalized Fuel Moisture vs. Precip. (5 day lag) 0.069

Comparison

Comparison

Alligator River ESP Array (n =349)

Comparison

Allen Road ESP Array (n =310)

Green Swamp ESP Array (n =53)
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Table 3.4: Correlations for the normalized soil moisture vs. daily NWS AHPS precipitation 

analysis. 

Correlation 

Coefficient r

Normalized Soil Moisture vs. Precip. (0 day lag) 0.017

Normalized Soil Moisture vs. Precip. (1 day lag) 0.012

Normalized Soil Moisture vs. Precip. (2 day lag) 0.026

Normalized Soil Moisture vs. Precip. (3 day lag) 0.028

Normalized Soil Moisture vs. Precip. (4 day lag) 0.049

Normalized Soil Moisture vs. Precip. (5 day lag) 0.065

Correlation 

Coefficient r

Normalized Soil Moisture vs. Precip. (0 day lag) 0.125

Normalized Soil Moisture vs. Precip. (1 day lag) 0.108

Normalized Soil Moisture vs. Precip. (2 day lag) 0.100

Normalized Soil Moisture vs. Precip. (3 day lag) 0.097

Normalized Soil Moisture vs. Precip. (4 day lag) 0.018

Normalized Soil Moisture vs. Precip. (5 day lag) -0.079

Correlation 

Coefficient r

Normalized Soil Moisture vs. Precip. (0 day lag) 0.091

Normalized Soil Moisture vs. Precip. (1 day lag) 0.161

Normalized Soil Moisture vs. Precip. (2 day lag) 0.248

Normalized Soil Moisture vs. Precip. (3 day lag) 0.269

Normalized Soil Moisture vs. Precip. (4 day lag) 0.187

Normalized Soil Moisture vs. Precip. (5 day lag) 0.304

Comparison

Comparison

Alligator River ESP Array (n =349)

Comparison

Allen Road ESP Array (n =278)

Green Swamp ESP Array (n =51)
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Table 3.5: Correlations for the normalized fuel moisture vs. daily gridded KBDI analysis. 

Correlation 

Coefficient r

Normalized Fuel Moisture vs. KBDI (0 day lag) -0.203

Normalized Fuel Moisture vs. KBDI (1 day lag) -0.067

Normalized Fuel Moisture vs. KBDI (2 day lag) 0.012

Normalized Fuel Moisture vs. KBDI (3 day lag) 0.041

Normalized Fuel Moisture vs. KBDI (4 day lag) 0.052

Normalized Fuel Moisture vs. KBDI (5 day lag) 0.043

Correlation 

Coefficient r

Normalized Fuel Moisture vs. KBDI (0 day lag) -0.217

Normalized Fuel Moisture vs. KBDI (1 day lag) -0.118

Normalized Fuel Moisture vs. KBDI (2 day lag) -0.088

Normalized Fuel Moisture vs. KBDI (3 day lag) -0.061

Normalized Fuel Moisture vs. KBDI (4 day lag) -0.038

Normalized Fuel Moisture vs. KBDI (5 day lag) -0.041

Correlation 

Coefficient r

Normalized Fuel Moisture vs. KBDI (0 day lag) 0.234

Normalized Fuel Moisture vs. KBDI (1 day lag) 0.279

Normalized Fuel Moisture vs. KBDI (2 day lag) 0.320

Normalized Fuel Moisture vs. KBDI (3 day lag) 0.311

Normalized Fuel Moisture vs. KBDI (4 day lag) 0.280

Normalized Fuel Moisture vs. KBDI (5 day lag) 0.209

Comparison

Comparison

Alligator River ESP Array (n =349)

Comparison

Allen Road ESP Array (n =310)

Green Swamp ESP Array (n =53)
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Table 3.6: Correlations for the normalized soil moisture vs. daily gridded KBDI analysis. 

Correlation 

Coefficient r

Normalized Soil Moisture vs. KBDI (0 day lag) 0.372

Normalized Soil Moisture vs. KBDI (1 day lag) 0.356

Normalized Soil Moisture vs. KBDI (2 day lag) 0.332

Normalized Soil Moisture vs. KBDI (3 day lag) 0.309

Normalized Soil Moisture vs. KBDI (4 day lag) 0.300

Normalized Soil Moisture vs. KBDI (5 day lag) 0.285

Correlation 

Coefficient r

Normalized Soil Moisture vs. KBDI (0 day lag) -0.331

Normalized Soil Moisture vs. KBDI (1 day lag) -0.306

Normalized Soil Moisture vs. KBDI (2 day lag) -0.289

Normalized Soil Moisture vs. KBDI (3 day lag) -0.272

Normalized Soil Moisture vs. KBDI (4 day lag) -0.255

Normalized Soil Moisture vs. KBDI (5 day lag) -0.254

Correlation 

Coefficient r

Normalized Soil Moisture vs. KBDI (0 day lag) -0.563

Normalized Soil Moisture vs. KBDI (1 day lag) -0.542

Normalized Soil Moisture vs. KBDI (2 day lag) -0.513

Normalized Soil Moisture vs. KBDI (3 day lag) -0.475

Normalized Soil Moisture vs. KBDI (4 day lag) -0.437

Normalized Soil Moisture vs. KBDI (5 day lag) -0.400

Comparison

Comparison

Alligator River ESP Array (n =349)

Comparison

Allen Road ESP Array (n =278)

Green Swamp ESP Array (n =51)
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Table 3.7: Correlations for the normalized fuel moisture vs. daily station-based ERC analyses. 

Correlation 

Coefficient r  with 

Fuel Model O

Correlation 

Coefficient r  with 

Fuel Model G

Normalized Fuel Moisture vs. ERC (0 day lag) -0.739 -0.614

Normalized Fuel Moisture vs. ERC (1 day lag) -0.561 -0.390

Normalized Fuel Moisture vs. ERC (2 day lag) -0.325 -0.219

Normalized Fuel Moisture vs. ERC (3 day lag) -0.237 -0.152

Normalized Fuel Moisture vs. ERC (4 day lag) -0.197 -0.125

Normalized Fuel Moisture vs. ERC (5 day lag) -0.176 -0.097

Correlation 

Coefficient r  with 

Fuel Model O

Correlation 

Coefficient r  with 

Fuel Model G

Normalized Fuel Moisture vs. ERC (0 day lag) -0.673 -0.664

Normalized Fuel Moisture vs. ERC (1 day lag) -0.390 -0.323

Normalized Fuel Moisture vs. ERC (2 day lag) -0.125 -0.081

Normalized Fuel Moisture vs. ERC (3 day lag) -0.130 -0.091

Normalized Fuel Moisture vs. ERC (4 day lag) -0.076 -0.057

Normalized Fuel Moisture vs. ERC (5 day lag) 0.039 -0.028

Correlation 

Coefficient r  with 

Fuel Model O

Correlation 

Coefficient r  with 

Fuel Model G

Normalized Fuel Moisture vs. ERC (0 day lag) -0.650 -0.769

Normalized Fuel Moisture vs. ERC (1 day lag) -0.415 -0.824

Normalized Fuel Moisture vs. ERC (2 day lag) -0.257 -0.739

Normalized Fuel Moisture vs. ERC (3 day lag) -0.061 -0.114

Normalized Fuel Moisture vs. ERC (4 day lag) 0.074 -0.581

Normalized Fuel Moisture vs. ERC (5 day lag) 0.146 0.080

Comparison

Comparison

Comparison

Alligator River ESP Array (n =344)
ERC data from the Dare Bomb Range RAWS site (NDBR)

Allen Road ESP Array (n =280)
ERC data from the Pocosin Lakes RAWS site (NPOC)

Green Swamp ESP Array (n =48)
ERC data from the Nature Conservancy RAWS site (NNAC)
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Table 3.8: Correlations for the normalized soil moisture vs. daily station-based ERC analyses. 

Correlation 

Coefficient r  with 

Fuel Model O

Correlation 

Coefficient r  with 

Fuel Model G

Normalized Soil Moisture vs. ERC (0 day lag) -0.116 0.147

Normalized Soil Moisture vs. ERC (1 day lag) -0.056 0.155

Normalized Soil Moisture vs. ERC (2 day lag) -0.050 0.142

Normalized Soil Moisture vs. ERC (3 day lag) -0.053 0.163

Normalized Soil Moisture vs. ERC (4 day lag) -0.105 0.067

Normalized Soil Moisture vs. ERC (5 day lag) -0.084 0.104

Correlation 

Coefficient r  with 

Fuel Model O

Correlation 

Coefficient r  with 

Fuel Model G

Normalized Soil Moisture vs. ERC (0 day lag) -0.057 0.011

Normalized Soil Moisture vs. ERC (1 day lag) -0.109 0.001

Normalized Soil Moisture vs. ERC (2 day lag) -0.123 0.035

Normalized Soil Moisture vs. ERC (3 day lag) -0.102 0.058

Normalized Soil Moisture vs. ERC (4 day lag) -0.095 0.078

Normalized Soil Moisture vs. ERC (5 day lag) -0.046 0.126

Correlation 

Coefficient r  with 

Fuel Model O

Correlation 

Coefficient r  with 

Fuel Model G

Normalized Soil Moisture vs. ERC (0 day lag) -0.254 -0.217

Normalized Soil Moisture vs. ERC (1 day lag) -0.395 -0.266

Normalized Soil Moisture vs. ERC (2 day lag) -0.401 -0.343

Normalized Soil Moisture vs. ERC (3 day lag) -0.375 -0.411

Normalized Soil Moisture vs. ERC (4 day lag) -0.295 -0.347

Normalized Soil Moisture vs. ERC (5 day lag) -0.333 -0.446

Comparison

Comparison

Comparison

Alligator River ESP Array (n =344)
ERC data from the Dare Bomb Range RAWS site (NDBR)

Allen Road ESP Array (n =252)
ERC data from the Pocosin Lakes RAWS site (NPOC)

Green Swamp ESP Array (n =46)
ERC data from the Nature Conservancy RAWS site (NNAC)
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Figure 3.1: Pocosin habitats (red) in eastern North Carolina, and the locations of the Alligator 

River ESP Array (AR), Pocosin Lakes/Allen Road ESP Array (PL), and the Green Swamp ESP 

Array (GS).  Map taken from NCGAP 1992. 
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Figure 3.2: Data availability (in green) for each ESP array. 
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Figure 3.3: Locations of ESP arrays (green) and nearby RAWS stations (red) in eastern North 

Carolina.  Base map data from Google Earth. 
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Figure 4.1: KBDI values on June 31, 2011, interpolated from observations from the RAWS 

stations indicated by black triangles.  The difference in local resolution is apparent by comparing 

with Figure 2.1. 
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