Teleconnections
How Patterns Far Away Can Influence Our Weather

Mark Shafer
University of Oklahoma
Norman, OK
Teleconnections

Connectedness of large-scale weather patterns across the world
If you poke one area, another area is affected as well
Like dropping a pebble in a pond - ripples interact to make some waves bigger
El Niño Conditions

(b) El Niño Conditions

Sinking air
DRY
Atmospheric pressure rises

Strong countercurrent

Rising air
Atmospheric pressure falls

Ecuador
Peru

Equator

Cold water
Warm water

Thermocline

© 2007 Thomson Higher Education
Typical ENSO Winter Effects

- **El Niño:**
 - Lots of [non-Arctic] storms tracking rapidly from west-to-east across southern half of U.S.
 - Very wet across Southern states; very warm across Northern states

- **La Niña:**
 - Storm track often stays north of us
 - OK warm & dry for extended periods.
 - When it jumps south (quickly) we get weather systems, but they often lack sufficient moisture
 - We go from warm, dry and windy to cold, dry and windy
 - The storm system finally explodes with precipitation somewhere around Memphis
Typical El Niño Impacts

Winter

Summer

NOAA
A note about El Niño / La Niña

Effects most pronounced in the winter
 • Jet stream is shifted northward in summer; no connection between tropical Pacific and Southern Plains

A dry winter and spring can get the dry soil feedback process going in summer (like 2011)

Moderate relationship in Oklahoma; stronger in Texas and Southwest

In Oklahoma in the Fall, actually reversed relationship
 • El Niño = dry, La Niña = wet

Most predictable of the seasonal / inter-annual factors, but only partially explains seasonal rainfall and temperature patterns
But Wait, There’s More...

- **North Atlantic Oscillation (NAO)**
 - High-frequency oscillation
 - Stronger impact on N. American east coast & Europe
 - Negative tends toward dry southern plains

- **Pacific Decadal Oscillation (PDO)**
 - “Sloshing” between northern and central Pacific, typically 20-30 year period.
 - May be a major contributor to extended drought patterns (negative phase)
 - Cool phase favors development of La Nina

- **Atlantic Multidecadal Oscillation (AMO)**
 - Also long pattern (20-30 years)
 - Warm phase usually dry southern plains
 - More active hurricane seasons as convection shifts eastward
CAUSES AND IMPACTS OF DROUGHT
Large-Scale, Stationary High Pressure

Air rotates clockwise around high pressure

“steers” storms away

Air descends = no clouds

As long as it sits in place, lots of sunshine, no rain

Occurs, to some extent, every summer
Feedback from Dry Soils

Normally, vegetation and water bodies evaporate water, which cools the air near the ground.

If there isn’t enough water to evaporate, sun’s energy heats soil instead.
Ocean Circulations

- Oceans flip between “warm phases” and “cool phases”
- Pacific, Atlantic oscillations about every 20-30 years
- Tropical Pacific every few years (El Niño / La Niña)
- Affects jet stream patterns
Seasonal cycle of ENSO impacts

New Mexico has positive correlations year-round, especially in winter and spring (top panels).

Texas correlates highest in winter. Summer and fall are barely constrained by phase of ENSO.

Oklahoma shows negative correlations in fall (lower right), while the other three seasons favor positive correlations, especially in winter.
“Phases” of ENSO

Preference for El Niños

Preference for La Niñas

Unsettled, but often weak
When These Align, It Can Be Bad News

PDO

AMO
Historical Droughts in Oklahoma

Annual Precipitation History with 5-year Tendencies
Oklahoma Statewide: 1895-2014

- Wetter periods
- Drier periods
- Annual precipitation value
Projections for the Future

Higher air temperatures will cause increases in surface evaporation.

Drier soils will absorb a larger proportion of the incoming heat from the sun.

Hotter soils and adjacent air results in hotter summers.
• Even areas where precipitation does not decrease will be susceptible to drought from higher temperatures.

Under higher emissions scenarios, widespread drought is projected to become more common over most of the central and southern U.S.

By mid-century, the average annual temperature in most locations will exceed the current hottest year on record.
• For most states, the hottest year on record is less than 3 degrees above the long-term mean.
Energy, Water, and Land Use

Rising temperatures are leading to increased demand for water and energy. In parts of the region, this will constrain development, stress natural resources, and increase competition for water among communities, agriculture, energy production, and ecological needs.

National Climate Assessment, 2014
CURRENT TELECONNECTIONS STATUS
During the last four weeks, tropical SSTs were above average across the central and eastern Pacific, with the largest anomalies in the eastern Pacific.
ONI (°C): Evolution since 1950

The most recent ONI value (July - September 2015) is 1.5°C.
Historical El Niño and La Niña Episodes Based on the ONI computed using ERSST.v4

Recent Pacific warm (red) and cold (blue) periods based on a threshold of +/- 0.5 °C for the Oceanic Nino Index (ONI) [3 month running mean of ERSST.v4 SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)]. For historical purposes, periods of below and above normal SSTs are colored in blue and red when the threshold is met for a minimum of 5 consecutive over-lapping seasons.

The ONI is one measure of the El Niño-Southern Oscillation, and other indices can confirm whether features consistent with a coupled ocean-atmosphere phenomenon accompanied these periods. The complete table going back to DJF 1950 can be found [here](#).

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.9</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2004</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>2005</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.7</td>
</tr>
<tr>
<td>2006</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>2007</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-1.2</td>
<td>-1.3</td>
</tr>
<tr>
<td>2008</td>
<td>-1.4</td>
<td>-1.3</td>
<td>-1.1</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.5</td>
<td>-0.7</td>
</tr>
<tr>
<td>2009</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.4</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>2010</td>
<td>1.3</td>
<td>1.1</td>
<td>0.8</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-1.3</td>
<td>-1.4</td>
<td>-1.3</td>
<td>-1.4</td>
</tr>
<tr>
<td>2011</td>
<td>-1.3</td>
<td>-1.1</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.5</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.8</td>
</tr>
<tr>
<td>2012</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>2013</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>2014</td>
<td>-0.5</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>2015</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
The chance of El Niño is approximately 95% through Northern Hemisphere winter and is near 55% by the late spring (AMJ) 2016.
Most models indicate that Niño 3.4 will be above +1.5°C (a “strong” El Niño) during late 2015 into early 2016.

Positive anomalies are predicted to weaken through the Northern Hemisphere Spring 2016.

Figure provided by the International Research Institute (IRI) for Climate and Society (updated 15 September 2015).
“Godzilla” El Nino versus The Blob
Current Status of the Pacific Decadal Oscillation
Atlantic Multidecadal Oscillation still running warm
Thank You!

Mark Shafer
Southern Climate Impacts Planning Program
Norman, Oklahoma
mshafer@ou.edu
(405) 325-3044

Support Provided by:
NOAA Regional Integrated Sciences and Assessments (RISA)
NOAA Sectoral Applications Research Program (SARP)
NIDIS / Coping With Drought