CLIMATE CHANGE AND INVASION: DOES A LOSS OF ECOLOGICAL INTEGRITY AFFECT THE CULTURAL EXPRESSION OF AN INDIGENOUS CULTURE?

> Valerie A. Small, Ph.D. Wolf Mountain Environmental

INTRODUCTION

- Biological diversity—manifestation of ecosystem health
- Invasive plant species threatens ecosystem function
- Riparian zones—vulnerable
- River regulation/diversions (dams)
 - Invasive plants may threaten indigenous rituals/ceremonies due to:
 - Outcompete native plant species
 - Reducing availability to harvest plants for cultural use

RIPARIAN ECOSYSTEMS

 Plant survivorship—complex riparian **Historical native vegetation** Salicacaeae Populus deltoides L. Plains cottonwood (Salix sp.) Willow Natural flow of rivers—now regulated **Divergent Dams**—irrigation Removing flood pulse = lack of recruitment sites Milk and Marias River decline in native woody vegetation

<u>Populus deltoides subsp.</u> <u>monilifera (plains cottonwood)</u>

- Dominant component of riparian ecosystems
- Riparian ecosystems (only native forested environments)
- Essential habitat (82 % avian species)
- Cultural significance not addressed
- Harvested for ceremonial purposes

– Crow Tribal members

Populus deltoides (contd.)

- Seed dispersal-wind
- Germination success (small)
- Declined (Pearce & Smith 2009)
 - seed/seedling mortality
 - Lack of recruitment sites
 - agriculture--draining floodplains

STUDY LOCATION

<u>Cultural Significance</u> <u>Plains Cottonwoods</u>

- Historical
 - Battle of Little Big Horn
- Contemporary practices
 - Sweatlodge
 - Sacred Sundance Ceremony
 - Annual Crow Fair
 - Traditional gathering of native plants

PLAINS COTTONWOOD CULTURAL USE

<u>RUSSIAN OLIVE</u> INVASION IN PASTURES

<u>STUDY SPECIES</u> RUSSIAN OLIVE (ELAEAGNUS ANGUSTIFOLIA L.)

- Invasive woody shrub/small tree
- Agriculture development post-Dawes Act 1887
- Planted within floodplains
- Crow-IECCC

<u>Elaeagnus angustifolia L.</u> Russian Olive

- Shade tolerant
- Flood/drought tolerant
- Fixes Nitrogen
- Asexual/sexual reproduction
- Seed longevity (drupes)
- Dispersal bird/mammal/water
- Pathogens/herbivores
 absent
- Difficult to control/eradicate

<u>RESEARCH QUESTIONS/</u> <u>METHODOLOGY</u>

QUESTIONS

- What is the current distribution of Russian olive along Little Bighorn/Bighorn Rivers and floodplains?
- Will near-term climate change influence the spread of Russian olive?
- What is the current estimated size structure of cottonwood?

<u>METHODS</u>

- Mapped presence points
- Maximum Entropy Model (MaxEnt)
- NIISS
- 7.32m circular plots (n = 10)
- Near/far ceremonial sites
- Interviews with Elders
 - Distance to travel
 - Availability perceptions

Mapped Russian olive (Elaeagnus angustifolia L.)

Climate Predictor Variables Used As Environmental Layers In MaxEnt Model

Temperature	Annual Precipitation
Maximum Temperature: Warmest Month	Precipitation: Wettest Month
Enhanced Vegetation Index	Mean Temperature: Coldest
	Quarter
Precipitation: Driest Month	Frequency of Precipitation
Precipitation: Wettest Quarter	Annual Mean Temperature
Isothermality	Mean Temperature: Driest Quarter
Mean Temperature: Wettest Quarter	Precipitation: Warmest Quarter
Mean Temperature: Coldest Quarter	Enhanced Vegetation Index/ Mean
Precipitation: Coldest Quarter	Precipitation Seasonality
Mean Diurnal Range	Precipitation: Driest Quarter
Annual Grow Days	Minimum Temperature: Coldest
	Month

Results MaxEnt Model

Plot Results Cottonwood Height Near/Far Ceremonial Sites

Plot Variables	<u>Near Plots</u>	<u>Far Plots</u>
Mean	1.41	0.77
Variance	7.24	6.34
Df	355	P (T<=t) two-tail 0.01 P (T<=t) one-tail 0.001

RESTULS (CONTD.) PLOT DATA--DBH

INTERVIEW RESULTS

- The maximum distance harvest >
- 80 km to 8.0 km for all size classes 25 ybp
- Present-day mean maximum ~ 98 km, greatest = 193 km
- 82% travel to harvest sapling size (3.6-4.5m) class stems > within 25 years
- Support plot data
- All size classes affected

<u>CONCLUSIONS</u>

- Russian olive continued spread
- Cottonwood (other species) continue to decline
- Climate change—hasten effects (increased precip/temps)
- Threatens cultural integrity and ecological biodiversity
- Management plans
 - mitigation of *E. angustifolia*
 - Planting of cottonwoods/willows in buffer zones

DISSERTATION TITLE

• LINKING CULTURE, ECOLOGY AND POLICY: THE INVASION OF RUSSIAN-OLIVE (*ELAEAGNUS ANGUSTIFOLIA* L.) ON THE CROW INDIAN RESERVATION, SOUTH-CENTRAL MONTANA, USA

CHAPTER TITLES

American Indian Land Policy: Land Use, Ownership Status and the Density of The Invasive Russian Olive (*Elaeagnus Angustifolia* L.) On The Crow Indian Reservation, Montana, USA

Chapter 3: Losing Tradition: The Biocultural Effects of Russian Olive (*Elaeagnus Angustifolia* L.) On The Crow Indian Reservation, Montana, USA