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CHAPTER 7

QUALITY CONTROL AND QUALITY ASSURANCE OF
SOIL MOISTURE DATA

Mike Cosh, Ed Ayres, Todd Caldwell, Vinit Sehgal, Zamir Libohova, Nandita Gaur

Learning Outcomes Quiality assurance (QA) (Campbell et al., 2013) of soil moisture
Properly identifying and data refers to the set of processes that are employed to improve
flagging data errors helps to confidence and decrease errors in the production of soil moisture
ensure the quality of a dataset data. Quality control (QC) processes are measures taken after
and support viability of data data are collected to improve or remove data points so that the
use. final product is of high quality.

QUALITY ASSURANCE

Pre-requisites of a well-functioning soil moisture sensor include proper installation of the sensor
at the correct depth and use under conditions that the sensor is designed for. Proper installation
methods can be accessed in Caldwell et al. (2022), and recommendations for siting methods,
sensor calibration, and other important installation processes have been discussed in Chapters 2-6
of this document. This chapter describes methods to identify data errors, trace their origins, and
report or fix them.

CATEGORIES OF DATA ERRORS

There are two primary types of errors (described below) that can be flagged. Type | errors can be
easily flagged using automated tests during QC, but Type Il errors require manual verification
and are often detected during QA activities. Type Il errors should not be considered errors until
proper manual inspection of each erroneous data point is conducted.

The International VVocabulary of Basic and General Terms in Meteorology (VIM) also provides a
classification system for identifying Uncertainty in Measurement (GUM): Type A (systematic)
and Type B (random) data errors (V1M International VVocabulary of Metrology — Basic and
General Concepts and Associated Terms, 2006). In this Soil Moisture Data Quality Guidance
document, a different approach than the GUM approach is used to categorize data errors. In this
document, error type is based on the skill set necessary to identify and address potential data
errors: Type | (errors that can be identified via a simple automated algorithm) and Type Il (errors
that require additional skillsets to identify and address).

Visually Observable, Easy-to-Identify Errors (Type I)

Visually observable Type I errors are relatively straightforward to detect. QA tests that detect
sensor failure, recorder failure, or disruptive environmental events can be discovered and
corrected by automated methods since they leave distinctly identifiable signatures in the data
(Campbell et al., 2013; Dorigo et al., 2013; Dorigo et al., 2021). These tests can be easily
automated and should be used for flagging. Examples of Type I errors in data are shown in Figure
7, taken from Caldwell et al. (2022).
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Figure 7. Examples of Type I errors in data. Data from (A) SCAN 2084, Uapb-Marianna, Arkansas,
that shows periodic dips at 5 cm. (B) SCAN 2015, Adams Ranch #1, New Mexico, shows a positive step
change at 50 cm depth without changes in the upper depths. (C) SCAN 808, Table Mountain, Montana,
with a downward step change, spikes, and even recovery at 50 cm depth that does not correspond to
rainfall events. (D) SCAN 2006, Bushland #1, Texas, showing no response to precipitation events at the
5 or 10 cm sensor, with some recovery of the 10 cm sensor followed by the eminent failure of both. (E)
SCAN 2027, Little River, Georgia, with a glitching sensor at 20 cm and failure at both the 5 and 20 cm
depths. Sensor depths are denoted as 5 cm (black), 10 cm (blue), 20 cm (orange), 50 cm (dark gray), and
100 cm (yellow). Abbreviations: SWC = soil water content; PPT = precipitation. Figure Credit:
Caldwell et al., 2022.

Ideally, automated QA tests should be performed at the native sensor sampling frequency. A list
of automated tests (Hubbard et al., 2005) that are used by existing networks and projects to flag
soil water content data include:

1. Range test or high/low range limit test: The range test (sometimes called the high/low
range limit or “upper and lower” threshold test) checks whether each soil moisture value
is less than the porosity of the soil and more than O (or the lower measurement limit of the
sensor). One occurrence of an off value would need to be flagged as an individual point in
the dataset, but repeated or periodic observations of such values will require flagging of
the sensor itself. Under such conditions, the sensor(s) will need manual inspection and
may require replacement or additional tests before data can be reported.
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2. Constant value test: A failed sensor may often report a constant value. While in some

cases (for example, saturated conditions or very dry conditions) constant values may be
legitimate, an unexplained constant value of soil moisture over an extended period must
be flagged and manually examined.

Spike test: A spike test pertains to observing spikes (Figure 7¢) in the data. Spikes in soil
moisture must only correspond with rainfall or snowmelt events, and typically the spikes
will be observed first in the near surface soil moisture and subdued replicas of the spikes
may be observed after a lag in the subsequent depths. It is possible to observe a spike in
the deeper soil before the sensors above in cases of shrink-swell clay soils. A spike in
data that is not occurring concurrently with rainfall must be automatically flagged and
subject to manual testing of the sensor since it may imply a failed or temporarily failing
sensor.

Break test: Breaks in soil moisture measurements must be flagged as missing data.

Temperature test: Most soil moisture sensors are built to function within specific
temperature ranges and cannot detect frozen soil moisture. If the soil temperature at any
depth falls outside of that range or below 0 °C, the data must be flagged and not reported
until a manual verification is performed.

Complex and Hard-to-ldentify Errors (Type Il)

Type Il errors are more challenging to detect as the data might seem plausible at first glance, but
the underlying dynamics do not align with the expected patterns of moisture redistribution or
unsaturated flow processes. Addressing these errors requires a higher level of investigation, and
they are better identified using QA procedures described later in this chapter. Any flags assigned
to Type Il errors should be verified by an expert. Some of the hydrologic principles that can be
employed to assess inconsistencies include:
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1. Correlations in temporal relationship of soil moisture with ancillary variables: It is

expected that changes in soil moisture values will correlate to changes in other ancillary
variables, such as rain events or some changes in air and soil temperature. Data errors
wherein these relationships are not present can be identified by utilizing known rainfall-
runoff-storage-soil moisture redistribution relationships that correspond to the specific
soil, geomorphic, and cover conditions. Soil moisture values that do not conform to long-
established relationships can be temporarily flagged and investigated during QA activities
to ensure that the variability in the relationships is a true data error and not driven by
changes in the landscape that justify the deviation in correlative relationships. Advanced
multiscale signal-processing techniques, like Wavelet Transform and Empirical Mode
Decomposition, can be used to assess the temporal variability in the soil moisture
observations across multiple time scales and to detect potential anomalies and outliers
(Mallat and Hwang, 1992; Geng et al., 2011; Thill et al., 2017).

Moisture redistribution in unsaturated flow process: This data quality test relies on
assessing the consistency of time series data to determine if moisture redistribution
patterns align with expected unsaturated flow processes. These include verifying that
profile soil moisture sensors respond in order by depth to rainfall, with those nearest to
the soil surface responding first. These checks would need to be investigated after
immediate flagging, since in cases of preferential flow, some sensors below may respond
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earlier than those above them. Such types of evaluation may require developing site-
specific tools.

3. Calibration shift or sensor fouling: Sensors may change in the accuracy of their
readings over time. A slow drift in a sensor is often also very hard to detect. Identifying
drift of this type would require careful evaluation of the data and recalibration of the
sensor (Wagner et al., 2006). One way of observing this may be to identify the ultimate
minimum soil moisture value after a significantly long drydown (> 60 days). Itis
reasonable to assume that two periods of 60 days of drying would end at the same number
if there were a similarity in the temperature or season. Consistency of readings is not as
readily observed at maximum soil moistures because the salinity of the soil can change
more easily with rainfall/overland flow, and salinity may be a dominant portion of the
dielectric constant, if a dielectric based probe is being used.

CORRECTING SOURCE OF DATA ERRORS

Upon error detection, the cause of errors in the data should be identified and corrected. Random
Type | errors in data can occur as a result of voltage fluctuations, inappropriate temperature
conditions, or other random or natural occurrences beyond the operator’s control, but
systematically occurring errors must be corrected. Errors of either type can occur as a result of
four causes.

1. Instrument malfunction: Instrument malfunction will typically lead to Type I errors and
can be corrected by repair or replacement of the sensor.

2. Personnel errors: Personnel errors may include incorrect metadata for error detection
(for example, incorrect upper and lower limits for the range test). Such errors will also be
a systematic and can be corrected by training personnel or establishing protocols that do
not leave scope for errors.

3. Transmission errors: Transmission errors will typically lead to increased latency in data
and so are easily detected. Correcting the source of these types of errors would require
expert inspection.

4. Data processing errors: Data processing errors can be Type | or 1. Once identified,
these must be corrected by updating algorithms or incorporating additional manual
verification.

CONSIDERATIONS FOR AUTOMATING SOIL MOISTURE DATA QUALITY CHECKS

Automated QA tests are often the most effective way to identify suspect data for large networks
and/or long-term projects where the quantity of data is typically too large relative to staffing
resources to allow effective manual data reviewing and flagging*°. One advantage of automated
tests is that they can usually be run shortly after data collection, facilitating near-real-time
provisionally QA data availability. Other advantages of automated tests include their consistency
and reliability. QA checks performed by humans are more prone to biases, person-to-person
variability, competing time commitments, variable focus, and other disruptions. However, there
are also disadvantages to automated QA tests, including the large upfront development effort and

10 Resources for automating soil moisture data flags, include discussion of this topic in a paper from the
International Soil Moisture Network (ISMN) (Dorigo et al., 2021, Section 3.1) and a GitHub repository
managed by the Group on Earth Observations (GEO): https://github.com/TUW-GEO/flaqit.
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ongoing code and database maintenance, as well as the effort involved in optimizing test
thresholds for a range of sites and measurement depths. Moreover, automated tests are typically
designed within the context of recent historical data under “normal” operating conditions, which
may result in inappropriate flagging when real but unusual or unprecedented events occur (e.g.,
extreme rain events, burrowing animals), likely requiring human intervention in data flagging for
these edge cases.

Previous work has developed broadly applicable automated QA tests that can be applied to a wide
range of sensors, including soil water content sensors (e.g., Hubbard et al., 2005), but soil water
content sensors also require some sensor-specific tests due to their measurement principle. In
particular, most, if not all, moisture sensors are unable to detect frozen water, and sensors
typically output very low water contents under frozen conditions, regardless of the actual soil
water content. As a result, flagging data as unreliable when the soil is frozen or close to
freezing is an important QA procedure for soil moisture sensors in most temperate, polar,
and high elevation regions.

Since any given data point may pass, fail, or be unassessed (e.g., due to missing thresholds and/or
missing data) by any combination of the automated QA tests, it can be useful to synthesize the
results into an all-encompassing final quality flag at the published data’s resolution (i.e.,
averaging interval) so that users have the option to quickly filter for valid data without having to
inspect the results of each test. For example, some networks, such as NEON, assign a final
quality flag of O (i.e., good). For NEON, this flag is applied when less than 10% of data points
fail any QA tests and the tests are performed on more than 80% of data points are within the
averaging interval (Smith et al., 2014).

TYPES OF FLAGS AND FLAGGING FREQUENCY

Type | errors should be flagged in near real time, while data must be assessed for Type Il errors at
least once a year and flagged accordingly. A note should be made on the public-interfacing
website describing the type of flags and flagging frequency for each flag.

QUALITY CONTROL

QC may include comparisons or correlations with existing data sources or water balance studies
including: (1) correlations or relationships with ancillary data (like temperature, humidity, etc.)
and soil properties (like porosity), (2) comparisons with other measured or modelled soil moisture
data, (3) checking for expected trends based on long-term temporal analysis of data, and (4)
checking for expected relationships between neighboring soil moisture stations (time stability
analysis). Each of the four methods could be used in isolation but when used in combination will
create the best quality soil moisture data.

QA is especially necessary to identify Type Il errors. These can be identified in several ways
described below.

TRIPLE COLLOCATION

Triple collocation is a method to understand the ability of a location to provide a representative
soil moisture estimate. Three independent methods of estimating soil moisture (usually remote
sensing, modelling, and in situ monitoring) are needed to determine the random error of
estimation (Chen et al., 2016). Random error estimation is a means of comparing multiple
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estimates of the same metric to determine if the values match or differ from one another!!. With a
well-functioning sensor, random errors should be low. Random error estimation from in situ
monitoring has been estimated as low as 0.01 m3/m?, although it is more often in the range of
0.02-0.05 m3m?for sensors with a soil-specific calibration (Table 5, Chapter 6). There are
challenges related to the differences in observation scale because there is a significant difference
between the multiple data series; however, this is still a useful tool for estimating error budgets.

CORRELATIONS WITH ANCILLARY DATA AND SOIL PROPERTIES

Various ancillary data can be measured along with soil moisture to assess its quality. These
datasets include soil temperature, soil permittivity, potential or actual evapotranspiration, and
precipitation. Expected correlations between soil moisture and these variables will often vary by
pedon and be hydro-climate specific. Hence, they cannot be borrowed from neighboring stations.
Correlations between soil moisture and ancillary data are best developed by long-term data from
the same site or by recommendations from an expert. Additionally, all possible response variables
measured by a soil moisture sensor like bulk electrical conductivity (BEC), temperature, voltage
ratios etc. must be recorded. This ancillary sensor-based information can be used during manual
verification of errors in times of uncertainty. Examples of comparisons of soil moisture data with
ancillary data (e.g., normalized difference vegetation index [NDVI], evapotranspiration, and
temperature) can be found in Zhang et al. (2018), Engstrom et al. (2008), Wang et al. (2007),
Dong et al. (2022), and Ford and Quiring (2014).

COMPARISON WITH SATELLITE/REMOTE SENSING

Remote sensing calibration and validation rely upon ground truth data from in situ stations that
monitor the near surface, as this depth is the limit of current soil moisture sensing from L and C
band radiometers/radars. Therefore, very often the critical installation depth for a point sensor is
at 5 cm, with a sensing volume that can be calibrated to the top 5 cm, the approximate monitoring
depth of L-band radiometry. Examples of remote sensing data that can be used for comparisons
include Zhang et al. (2017), Colliander et al. (2017), Li et al. (2022), and Wang et al. (2021).

EXAMPLES OF DATASETS FOR PERFORMING QC ACTIVITIES

Open-source hydrological, meteorological or vegetation datasets can be accessed through cloud
and web-based platforms that provide reference datasets for QA of soil moisture observations.
One such application, Application for Extracting and Exploring Analysis Ready Samples
(AppEEARYS), developed by NASA, provides a convenient on-demand extraction tool for point
and area samples. A survey of some relevant datasets available through AppEEARS is given in
Table 7.

1 In some cases, a triple collocation approach can yield a lumped estimate of sensor measurement and
representativeness uncertainty. This challenge is described more explicitly in Gruber et al. (2013) and Miralles
et al. (2010).
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Table 7. A brief sampling of hydrometeorological and vegetation indices products
accessible through the AppEEARS platform for point-based comparison with
network sensors.

Suite Full Name Identifier | Variable Resolution | Source
MODIS MODIS/Aqua MYD13A | NDVI 1 km, Satellite
Vegetation Indices 3 monthly
Monthly L3 Global 1
km SIN Grid
MODIS/Aqua MYD13Q | NDVI 250 m, 16- | Satellite
Vegetation Indices 16- | 1 day
Day L3 Global 250 m
SIN Grid
MODIS/Aqua Net MYD16A | Total ET 500 m, 8- Satellite
Evapotranspiration 2GF Total PET day
Gap-Filled 8-Day L4
Global 500 m SIN Grid
DAYMET | Daily Surface Weather | Daymet_v | Precipitation 1 km, daily | Ground-based
Data on a 1-km Grid 4 Air temp observations
for North America, Shortwave and statistical
Version 4 R1 radiation interpolating/e
xtrapolating
SMAP SMAP Enhanced L3 SPL3SMP | Soil moisture | 9 km, daily | Satellite
Radiometer Global and | _E v005 descending (6
Polar Grid Daily 9 km AM) and
EASE-Grid Soil ascending (6
Moisture, Version 5 PM)
SMAP L3 Radiometer | SPL3SMP | Soil moisture | 36 km, Satellite
Global Daily 36 km v008 descending (6 | daily
EASE-Grid Soil AM) and
Moisture, Version 8 ascending (6
PM)
SMAP L4 Global 3- SPLASM | Rootzone (0- | 9 km, 3- Land surface
hourly 9 km EASE- GP v006 | 100) soil hour model with
Grid Surface and Root moisture satellite data
Zone Soil Moisture Top layer (0- assimilation
Geophysical Data, 5cm) soil
Version 6 moisture

COMPARISON WITH AI/MACHINE LEARNING (Al/ML) DRIVEN TOOLS

Spatial estimation of soil moisture can be accomplished with artificial intelligence (Al) combined
with hydrologic modeling. Al is ideal for this task because of the complex nature of the
relationships between different processes and variables. However, this methodology is largely
driven by training data. While it is possible to forecast outside of the observed training domain,
the artificial intelligence will rely upon the mechanisms that are observed within the training
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domain. This can be a particular challenge for extreme or rare events. Drought and flood events
are often the most important features that a soil moisture network needs to detect/forecast, but
many statistics are not optimized for performance at these extremes.

GAP FILLING FOR MISSING VALUES OF SoOIL MOISTURE CONTINUOUS DATA

Gap filling of missing soil moisture data involves following scientific procedures to estimate soil
moisture values during times of periodic sensor failure. It is often an important exercise for
several stakeholders but, if attempted, must be done with caution. This is especially true if gap
filling is conducted over long time periods. Care must be taken to closely follow literature and
adhere to all mentioned conditions before incorporating gap filling into a network’s protocol.
Gap filled data must also be flagged.

Many hydrological models require high temporal resolution of inputs such as weather data
(precipitation, temperature, wind, solar radiation, etc.). Because high temporal resolution data are
rare, many methods have been developed to fill in the gaps with values from other sources, when
available, or by different interpolation techniques of the actual incomplete data (Waichler and
Wigmosta, 2022; Libohova et al., 2024; Owens et al., 2024). Missing data (gaps) from soil
moisture sensors are not uncommon and can happen for many reasons (instrument failure, low
battery, accidental damage, funding, etc.). This may in turn result in time series gaps spanning
from few hours to days depending on the sensors setting.

Simple techniques, such as linear interpolation, or more complex techniques, such as random
forest and other machine learning techniques, can be used successfully to fill in gaps or intervals
with missing data. The selection of the techniques depends on the temporal resolution of the
sensor and width of the gaps. For example, gaps of a few hours can be filled in through linear
interpolation or by calculating the rolling average from the five-hour period centered on the
missing time point, across all years. Random forest can be used to fill in wider gaps consisting of
multiple days or weeks. Similar techniques can be used to increase or decrease the temporal
resolution (timestep) of the moisture data. The coarsening, or decrease, in the temporal resolution
is usually more accurate than the opposite, although often finer temporal resolutions are
preferred. Data from different sensors can be combined to create a complete dataset, and factors
such as sensors type, depth, location, soils, or landscape position need to be considered for
pairing the correct appropriate sensors.

In Figure 8, sensors within the watershed boundaries have gaps in data that can be filled out with
data from sensors outside of the watershed boundaries. However, sensors need to be grouped
based on slope positions (Summit; sideslope (SS); toeslope (TS)); by the stream). For example,
the sensor with missing data located on a summit within the watershed (26) needs to be paired
with sensors located in the same or similar slope position outside the watershed boundaries (12,
18, 21, and 29). Plotting the moisture data grouped by slope position (Figure 9) shows the gaps
and provides the first visual assessment of the potential to fill in the gaps for the sensors within
the watershed using sensors outside of the watershed boundaries. However, not all the gaps can
be filled: some gaps might be too large, and any approach would not yield accurate results
(Figure 10).
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Figure 8. Layout of soil moisture sensors within and outside watershed boundaries and grouped by
slope position (Summit; SS — sideslope; TS — toeslope; by the stream). Figure Credit: The Long-
Term Agroecosystem Research (LTER) Network site of USDA-ARS Northwest Sustainable
Agroecosystems Research, at Cook Farm, Washington State University, Department of Crop and
Soil Sciences, Pullman, Washington.
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Figure 9. Soil moisture data plotted over time for sensors inside and outside of the watershed grouped
by slope position (Summit; SS — sideslope; TS — toeslope: and by the stream). Colors indicate different
sensors. Figure Credit: USDA-ARS Northwest Sustainable Agroecosystems Research, at Cook Farm,
Washington State University, Department of Crop and Soil Sciences, Pullman, Washington Cook
Farm. Data compiled by Caley Gasch, under supervision of David Brown, Department of Crop and
Soil Sciences, Washington State University, Pullman, Washington.
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Figure 10. A soil moisture sensor filled in with data from different techniques as described earlier. The
red line represents filled in gaps. Figure Credit: USDA-ARS Northwest Sustainable Agroecosystems
Research, at Cook Farm, Washington State University, Department of Crop and Soil Sciences, Pullman,
Washington Cook Farm. Data compiled by Caley Gasch, under supervision of David Brown, Department
of Crop and Soil Sciences, Washington State University, Pullman, Washington.
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