
SOIL MOISTURE DATA QUALITY GUIDANCE       DECEMBER 2024 

45 

 

CHAPTER 7 

QUALITY CONTROL AND QUALITY ASSURANCE OF 
SOIL MOISTURE DATA  

Mike Cosh, Ed Ayres, Todd Caldwell, Vinit Sehgal, Zamir Libohova, Nandita Gaur 

Quality assurance (QA) (Campbell et al., 2013) of soil moisture 

data refers to the set of processes that are employed to improve 

confidence and decrease errors in the production of soil moisture 

data. Quality control (QC) processes are measures taken after 

data are collected to improve or remove data points so that the 

final product is of high quality. 

QUALITY ASSURANCE  

Pre-requisites of a well-functioning soil moisture sensor include proper installation of the sensor 

at the correct depth and use under conditions that the sensor is designed for. Proper installation 

methods can be accessed in Caldwell et al. (2022), and recommendations for siting methods, 

sensor calibration, and other important installation processes have been discussed in Chapters 2-6 

of this document. This chapter describes methods to identify data errors, trace their origins, and 

report or fix them. 

CATEGORIES OF DATA ERRORS  

There are two primary types of errors (described below) that can be flagged. Type I errors can be 

easily flagged using automated tests during QC, but Type II errors require manual verification 

and are often detected during QA activities. Type II errors should not be considered errors until 

proper manual inspection of each erroneous data point is conducted.  

The International Vocabulary of Basic and General Terms in Meteorology (VIM) also provides a 

classification system for identifying Uncertainty in Measurement (GUM): Type A (systematic) 

and Type B (random) data errors (VIM International Vocabulary of Metrology – Basic and 

General Concepts and Associated Terms, 2006). In this Soil Moisture Data Quality Guidance 

document, a different approach than the GUM approach is used to categorize data errors. In this 

document, error type is based on the skill set necessary to identify and address potential data 

errors: Type I (errors that can be identified via a simple automated algorithm) and Type II (errors 

that require additional skillsets to identify and address). 

Visually Observable, Easy-to-Identify Errors (Type I) 

Visually observable Type I errors are relatively straightforward to detect. QA tests that detect 

sensor failure, recorder failure, or disruptive environmental events can be discovered and 

corrected by automated methods since they leave distinctly identifiable signatures in the data 

(Campbell et al., 2013; Dorigo et al., 2013; Dorigo et al., 2021). These tests can be easily 

automated and should be used for flagging. Examples of Type I errors in data are shown in Figure 

7, taken from Caldwell et al. (2022). 

Learning Outcomes 

Properly identifying and 

flagging data errors helps to 

ensure the quality of a dataset 

and support viability of data 

use. 

https://www.nist.gov/system/files/documents/pml/div688/grp40/International-Vocabulary-of-Metrology.pdf
https://www.nist.gov/system/files/documents/pml/div688/grp40/International-Vocabulary-of-Metrology.pdf
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Ideally, automated QA tests should be performed at the native sensor sampling frequency. A list 

of automated tests (Hubbard et al., 2005) that are used by existing networks and projects to flag 

soil water content data include: 

1. Range test or high/low range limit test: The range test (sometimes called the high/low 

range limit or “upper and lower” threshold test) checks whether each soil moisture value 

is less than the porosity of the soil and more than 0 (or the lower measurement limit of the 

sensor). One occurrence of an off value would need to be flagged as an individual point in 

the dataset, but repeated or periodic observations of such values will require flagging of 

the sensor itself. Under such conditions, the sensor(s) will need manual inspection and 

may require replacement or additional tests before data can be reported. 

Figure 7. Examples of Type I errors in data. Data from (A) SCAN 2084, Uapb-Marianna, Arkansas, 

that shows periodic dips at 5 cm. (B) SCAN 2015, Adams Ranch #1, New Mexico, shows a positive step 

change at 50 cm depth without changes in the upper depths. (C) SCAN 808, Table Mountain, Montana, 

with a downward step change, spikes, and even recovery at 50 cm depth that does not correspond to 

rainfall events. (D) SCAN 2006, Bushland #1, Texas, showing no response to precipitation events at the 

5 or 10 cm sensor, with some recovery of the 10 cm sensor followed by the eminent failure of both. (E) 

SCAN 2027, Little River, Georgia, with a glitching sensor at 20 cm and failure at both the 5 and 20 cm 

depths. Sensor depths are denoted as 5 cm (black), 10 cm (blue), 20 cm (orange), 50 cm (dark gray), and 

100 cm (yellow). Abbreviations: SWC = soil water content; PPT = precipitation. Figure Credit: 

Caldwell et al., 2022. 
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2. Constant value test: A failed sensor may often report a constant value. While in some 

cases (for example, saturated conditions or very dry conditions) constant values may be 

legitimate, an unexplained constant value of soil moisture over an extended period must 

be flagged and manually examined. 

3. Spike test: A spike test pertains to observing spikes (Figure 7c) in the data. Spikes in soil 

moisture must only correspond with rainfall or snowmelt events, and typically the spikes 

will be observed first in the near surface soil moisture and subdued replicas of the spikes 

may be observed after a lag in the subsequent depths. It is possible to observe a spike in 

the deeper soil before the sensors above in cases of shrink-swell clay soils. A spike in 

data that is not occurring concurrently with rainfall must be automatically flagged and 

subject to manual testing of the sensor since it may imply a failed or temporarily failing 

sensor.  

4. Break test:  Breaks in soil moisture measurements must be flagged as missing data. 

5. Temperature test: Most soil moisture sensors are built to function within specific 

temperature ranges and cannot detect frozen soil moisture. If the soil temperature at any 

depth falls outside of that range or below 0 °C, the data must be flagged and not reported 

until a manual verification is performed. 

Complex and Hard-to-Identify Errors (Type II) 

Type II errors are more challenging to detect as the data might seem plausible at first glance, but 

the underlying dynamics do not align with the expected patterns of moisture redistribution or 

unsaturated flow processes. Addressing these errors requires a higher level of investigation, and 

they are better identified using QA procedures described later in this chapter. Any flags assigned 

to Type II errors should be verified by an expert. Some of the hydrologic principles that can be 

employed to assess inconsistencies include: 

1. Correlations in temporal relationship of soil moisture with ancillary variables: It is 

expected that changes in soil moisture values will correlate to changes in other ancillary 

variables, such as rain events or some changes in air and soil temperature. Data errors 

wherein these relationships are not present can be identified by utilizing known rainfall-

runoff-storage-soil moisture redistribution relationships that correspond to the specific 

soil, geomorphic, and cover conditions. Soil moisture values that do not conform to long-

established relationships can be temporarily flagged and investigated during QA activities 

to ensure that the variability in the relationships is a true data error and not driven by 

changes in the landscape that justify the deviation in correlative relationships. Advanced 

multiscale signal-processing techniques, like Wavelet Transform and Empirical Mode 

Decomposition, can be used to assess the temporal variability in the soil moisture 

observations across multiple time scales and to detect potential anomalies and outliers 

(Mallat and Hwang, 1992; Geng et al., 2011; Thill et al., 2017). 

2. Moisture redistribution in unsaturated flow process: This data quality test relies on 

assessing the consistency of time series data to determine if moisture redistribution 

patterns align with expected unsaturated flow processes. These include verifying that 

profile soil moisture sensors respond in order by depth to rainfall, with those nearest to 

the soil surface responding first. These checks would need to be investigated after 

immediate flagging, since in cases of preferential flow, some sensors below may respond 
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earlier than those above them. Such types of evaluation may require developing site-

specific tools. 

3. Calibration shift or sensor fouling: Sensors may change in the accuracy of their 

readings over time. A slow drift in a sensor is often also very hard to detect. Identifying 

drift of this type would require careful evaluation of the data and recalibration of the 

sensor (Wagner et al., 2006). One way of observing this may be to identify the ultimate 

minimum soil moisture value after a significantly long drydown (> 60 days).  It is 

reasonable to assume that two periods of 60 days of drying would end at the same number 

if there were a similarity in the temperature or season. Consistency of readings is not as 

readily observed at maximum soil moistures because the salinity of the soil can change 

more easily with rainfall/overland flow, and salinity may be a dominant portion of the 

dielectric constant, if a dielectric based probe is being used.  

CORRECTING SOURCE OF DATA ERRORS  

Upon error detection, the cause of errors in the data should be identified and corrected. Random 

Type I errors in data can occur as a result of voltage fluctuations, inappropriate temperature 

conditions, or other random or natural occurrences beyond the operator’s control, but 

systematically occurring errors must be corrected. Errors of either type can occur as a result of 

four causes.  

1. Instrument malfunction: Instrument malfunction will typically lead to Type I errors and 

can be corrected by repair or replacement of the sensor. 

2. Personnel errors: Personnel errors may include incorrect metadata for error detection 

(for example, incorrect upper and lower limits for the range test). Such errors will also be 

a systematic and can be corrected by training personnel or establishing protocols that do 

not leave scope for errors. 

3. Transmission errors: Transmission errors will typically lead to increased latency in data 

and so are easily detected. Correcting the source of these types of errors would require 

expert inspection.  

4. Data processing errors: Data processing errors can be Type I or II. Once identified, 

these must be corrected by updating algorithms or incorporating additional manual 

verification. 

CONSIDERATIONS FOR AUTOMATING SOIL MOISTURE DATA QUALITY CHECKS  

Automated QA tests are often the most effective way to identify suspect data for large networks 

and/or long-term projects where the quantity of data is typically too large relative to staffing 

resources to allow effective manual data reviewing and flagging10. One advantage of automated 

tests is that they can usually be run shortly after data collection, facilitating near-real-time 

provisionally QA data availability. Other advantages of automated tests include their consistency 

and reliability. QA checks performed by humans are more prone to biases, person-to-person 

variability, competing time commitments, variable focus, and other disruptions. However, there 

are also disadvantages to automated QA tests, including the large upfront development effort and 

 

10 Resources for automating soil moisture data flags, include discussion of this topic in a paper from the 

International Soil Moisture Network (ISMN) (Dorigo et al., 2021, Section 3.1) and a GitHub repository 

managed by the Group on Earth Observations (GEO): https://github.com/TUW-GEO/flagit. 

https://hess.copernicus.org/articles/25/5749/2021/#section3
https://github.com/TUW-GEO/flagit
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ongoing code and database maintenance, as well as the effort involved in optimizing test 

thresholds for a range of sites and measurement depths. Moreover, automated tests are typically 

designed within the context of recent historical data under “normal” operating conditions, which 

may result in inappropriate flagging when real but unusual or unprecedented events occur (e.g., 

extreme rain events, burrowing animals), likely requiring human intervention in data flagging for 

these edge cases. 

Previous work has developed broadly applicable automated QA tests that can be applied to a wide 

range of sensors, including soil water content sensors (e.g., Hubbard et al., 2005), but soil water 

content sensors also require some sensor-specific tests due to their measurement principle. In 

particular, most, if not all, moisture sensors are unable to detect frozen water, and sensors 

typically output very low water contents under frozen conditions, regardless of the actual soil 

water content. As a result, flagging data as unreliable when the soil is frozen or close to 

freezing is an important QA procedure for soil moisture sensors in most temperate, polar, 

and high elevation regions.  

Since any given data point may pass, fail, or be unassessed (e.g., due to missing thresholds and/or 

missing data) by any combination of the automated QA tests, it can be useful to synthesize the 

results into an all-encompassing final quality flag at the published data’s resolution (i.e., 

averaging interval) so that users have the option to quickly filter for valid data without having to 

inspect the results of each test. For example, some networks, such as NEON, assign a final 

quality flag of 0 (i.e., good). For NEON, this flag is applied when less than 10% of data points 

fail any QA tests and the tests are performed on more than 80% of data points are within the 

averaging interval (Smith et al., 2014).  

TYPES OF FLAGS AND FLAGGING FREQUENCY 

Type I errors should be flagged in near real time, while data must be assessed for Type II errors at 

least once a year and flagged accordingly. A note should be made on the public-interfacing 

website describing the type of flags and flagging frequency for each flag.  

QUALITY CONTROL 

QC may include comparisons or correlations with existing data sources or water balance studies 

including: (1) correlations or relationships with ancillary data (like temperature, humidity, etc.) 

and soil properties (like porosity), (2) comparisons with other measured or modelled soil moisture 

data, (3) checking for expected trends based on long-term temporal analysis of data, and (4) 

checking for expected relationships between neighboring soil moisture stations (time stability 

analysis). Each of the four methods could be used in isolation but when used in combination will 

create the best quality soil moisture data.  

QA is especially necessary to identify Type II errors. These can be identified in several ways 

described below. 

TRIPLE COLLOCATION 

Triple collocation is a method to understand the ability of a location to provide a representative 

soil moisture estimate. Three independent methods of estimating soil moisture (usually remote 

sensing, modelling, and in situ monitoring) are needed to determine the random error of 

estimation (Chen et al., 2016). Random error estimation is a means of comparing multiple 
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estimates of the same metric to determine if the values match or differ from one another11. With a 

well-functioning sensor, random errors should be low. Random error estimation from in situ 

monitoring has been estimated as low as 0.01 m3/m3, although it is more often in the range of 

0.02-0.05 m3/m3 for sensors with a soil-specific calibration (Table 5, Chapter 6). There are 

challenges related to the differences in observation scale because there is a significant difference 

between the multiple data series; however, this is still a useful tool for estimating error budgets. 

CORRELATIONS WITH ANCILLARY DATA AND SOIL PROPERTIES 

Various ancillary data can be measured along with soil moisture to assess its quality. These 

datasets include soil temperature, soil permittivity, potential or actual evapotranspiration, and 

precipitation. Expected correlations between soil moisture and these variables will often vary by 

pedon and be hydro-climate specific. Hence, they cannot be borrowed from neighboring stations. 

Correlations between soil moisture and ancillary data are best developed by long-term data from 

the same site or by recommendations from an expert. Additionally, all possible response variables 

measured by a soil moisture sensor like bulk electrical conductivity (BEC), temperature, voltage 

ratios etc. must be recorded. This ancillary sensor-based information can be used during manual 

verification of errors in times of uncertainty. Examples of comparisons of soil moisture data with 

ancillary data (e.g., normalized difference vegetation index [NDVI], evapotranspiration, and 

temperature) can be found in Zhang et al. (2018), Engstrom et al. (2008), Wang et al. (2007), 

Dong et al. (2022), and Ford and Quiring (2014). 

COMPARISON WITH SATELLITE/REMOTE SENSING 

Remote sensing calibration and validation rely upon ground truth data from in situ stations that 

monitor the near surface, as this depth is the limit of current soil moisture sensing from L and C 

band radiometers/radars. Therefore, very often the critical installation depth for a point sensor is 

at 5 cm, with a sensing volume that can be calibrated to the top 5 cm, the approximate monitoring 

depth of L-band radiometry. Examples of remote sensing data that can be used for comparisons 

include Zhang et al. (2017), Colliander et al. (2017), Li et al. (2022), and Wang et al. (2021). 

EXAMPLES OF DATASETS FOR PERFORMING QC ACTIVITIES 

Open-source hydrological, meteorological or vegetation datasets can be accessed through cloud 

and web-based platforms that provide reference datasets for QA of soil moisture observations. 

One such application, Application for Extracting and Exploring Analysis Ready Samples 

(AppEEARS), developed by NASA, provides a convenient on-demand extraction tool for point 

and area samples. A survey of some relevant datasets available through AppEEARS is given in 

Table 7.   

 

 

 

11 In some cases, a triple collocation approach can yield a lumped estimate of sensor measurement and 

representativeness uncertainty. This challenge is described more explicitly in Gruber et al. (2013) and Miralles 

et al. (2010). 
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Table 7. A brief sampling of hydrometeorological and vegetation indices products 
accessible through the AppEEARS platform for point-based comparison with 
network sensors. 

Suite Full Name Identifier Variable Resolution Source 

MODIS MODIS/Aqua 
Vegetation Indices 

Monthly L3 Global 1 

km SIN Grid 

MYD13A
3 

NDVI 1 km, 
monthly 

Satellite 

MODIS/Aqua 

Vegetation Indices 16-

Day L3 Global 250 m 

SIN Grid 

MYD13Q

1 

NDVI 250 m, 16-

day 

Satellite 

MODIS/Aqua Net 

Evapotranspiration 

Gap-Filled 8-Day L4 
Global 500 m SIN Grid 

MYD16A

2GF 

Total ET 

Total PET 

500 m, 8-

day 

Satellite 

DAYMET Daily Surface Weather 
Data on a 1-km Grid 

for North America, 

Version 4 R1 

Daymet_v
4 

Precipitation 
Air temp 

Shortwave 

radiation 

1 km, daily Ground-based 
observations 

and statistical 

interpolating/e

xtrapolating  

SMAP SMAP Enhanced L3 
Radiometer Global and 

Polar Grid Daily 9 km 

EASE-Grid Soil 

Moisture, Version 5 

SPL3SMP
_E v005 

Soil moisture 
descending (6 

AM) and 

ascending (6 

PM) 

9 km, daily Satellite 

SMAP L3 Radiometer 
Global Daily 36 km 

EASE-Grid Soil 

Moisture, Version 8 

SPL3SMP 
v008 

Soil moisture 
descending (6 

AM) and 

ascending (6 

PM) 

36 km, 
daily 

Satellite 

SMAP L4 Global 3-
hourly 9 km EASE-

Grid Surface and Root 

Zone Soil Moisture 

Geophysical Data, 

Version 6 

SPL4SM
GP v006 

Rootzone (0-
100) soil 

moisture 

Top layer (0-

5cm) soil 

moisture 

9 km, 3-
hour 

Land surface 
model with 

satellite data 

assimilation 

 

COMPARISON WITH AI/MACHINE LEARNING (AI/ML) DRIVEN TOOLS 

Spatial estimation of soil moisture can be accomplished with artificial intelligence (AI) combined 

with hydrologic modeling. AI is ideal for this task because of the complex nature of the 

relationships between different processes and variables. However, this methodology is largely 

driven by training data. While it is possible to forecast outside of the observed training domain, 

the artificial intelligence will rely upon the mechanisms that are observed within the training 

https://appeears.earthdatacloud.nasa.gov/
https://lpdaac.usgs.gov/products/mod13a3v061/
https://lpdaac.usgs.gov/products/mod13a3v061/
https://lpdaac.usgs.gov/products/mod13a3v061/
https://lpdaac.usgs.gov/products/mod13a3v061/
https://lpdaac.usgs.gov/products/myd13q1v061/
https://lpdaac.usgs.gov/products/myd13q1v061/
https://lpdaac.usgs.gov/products/myd13q1v061/
https://lpdaac.usgs.gov/products/myd13q1v061/
https://lpdaac.usgs.gov/products/mod16a2gfv061/
https://lpdaac.usgs.gov/products/mod16a2gfv061/
https://lpdaac.usgs.gov/products/mod16a2gfv061/
https://lpdaac.usgs.gov/products/mod16a2gfv061/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2129
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2129
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2129
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2129
https://nsidc.org/data/spl3smp_e/versions/5
https://nsidc.org/data/spl3smp_e/versions/5
https://nsidc.org/data/spl3smp_e/versions/5
https://nsidc.org/data/spl3smp_e/versions/5
https://nsidc.org/data/spl3smp_e/versions/5
https://nsidc.org/data/spl3smp/versions/8
https://nsidc.org/data/spl3smp/versions/8
https://nsidc.org/data/spl3smp/versions/8
https://nsidc.org/data/spl3smp/versions/8
https://nsidc.org/data/spl4smgp/versions/6
https://nsidc.org/data/spl4smgp/versions/6
https://nsidc.org/data/spl4smgp/versions/6
https://nsidc.org/data/spl4smgp/versions/6
https://nsidc.org/data/spl4smgp/versions/6
https://nsidc.org/data/spl4smgp/versions/6
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domain. This can be a particular challenge for extreme or rare events. Drought and flood events 

are often the most important features that a soil moisture network needs to detect/forecast, but 

many statistics are not optimized for performance at these extremes. 

GAP FILLING FOR MISSING VALUES OF SOIL MOISTURE CONTINUOUS DATA  

Gap filling of missing soil moisture data involves following scientific procedures to estimate soil 

moisture values during times of periodic sensor failure. It is often an important exercise for 

several stakeholders but, if attempted, must be done with caution. This is especially true if gap 

filling is conducted over long time periods. Care must be taken to closely follow literature and 

adhere to all mentioned conditions before incorporating gap filling into a network’s protocol. 

Gap filled data must also be flagged.  

Many hydrological models require high temporal resolution of inputs such as weather data 

(precipitation, temperature, wind, solar radiation, etc.). Because high temporal resolution data are 

rare, many methods have been developed to fill in the gaps with values from other sources, when 

available, or by different interpolation techniques of the actual incomplete data (Waichler and 

Wigmosta, 2022; Libohova et al., 2024; Owens et al., 2024). Missing data (gaps) from soil 

moisture sensors are not uncommon and can happen for many reasons (instrument failure, low 

battery, accidental damage, funding, etc.). This may in turn result in time series gaps spanning 

from few hours to days depending on the sensors setting.  

Simple techniques, such as linear interpolation, or more complex techniques, such as random 

forest and other machine learning techniques, can be used successfully to fill in gaps or intervals 

with missing data. The selection of the techniques depends on the temporal resolution of the 

sensor and width of the gaps. For example, gaps of a few hours can be filled in through linear 

interpolation or by calculating the rolling average from the five-hour period centered on the 

missing time point, across all years. Random forest can be used to fill in wider gaps consisting of 

multiple days or weeks. Similar techniques can be used to increase or decrease the temporal 

resolution (timestep) of the moisture data. The coarsening, or decrease, in the temporal resolution 

is usually more accurate than the opposite, although often finer temporal resolutions are 

preferred. Data from different sensors can be combined to create a complete dataset, and factors 

such as sensors type, depth, location, soils, or landscape position need to be considered for 

pairing the correct appropriate sensors.  

In Figure 8, sensors within the watershed boundaries have gaps in data that can be filled out with 

data from sensors outside of the watershed boundaries. However, sensors need to be grouped 

based on slope positions (Summit; sideslope (SS); toeslope (TS)); by the stream). For example, 

the sensor with missing data located on a summit within the watershed (26) needs to be paired 

with sensors located in the same or similar slope position outside the watershed boundaries (12, 

18, 21, and 29). Plotting the moisture data grouped by slope position (Figure 9) shows the gaps 

and provides the first visual assessment of the potential to fill in the gaps for the sensors within 

the watershed using sensors outside of the watershed boundaries. However, not all the gaps can 

be filled: some gaps might be too large, and any approach would not yield accurate results 

(Figure 10).   
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Figure 8. Layout of soil moisture sensors within and outside watershed boundaries and grouped by 

slope position (Summit; SS – sideslope; TS – toeslope; by the stream). Figure Credit: The Long-

Term Agroecosystem Research (LTER) Network site of USDA-ARS Northwest Sustainable 

Agroecosystems Research, at Cook Farm, Washington State University, Department of Crop and 

Soil Sciences, Pullman, Washington.      

 

Figure 9. Soil moisture data plotted over time for sensors inside and outside of the watershed grouped 

by slope position (Summit; SS – sideslope; TS – toeslope: and by the stream). Colors indicate different 

sensors. Figure Credit: USDA-ARS Northwest Sustainable Agroecosystems Research, at Cook Farm, 

Washington State University, Department of Crop and Soil Sciences, Pullman, Washington Cook 

Farm. Data compiled by Caley Gasch, under supervision of David Brown, Department of Crop and 

Soil Sciences, Washington State University, Pullman, Washington. 
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Figure 10. A soil moisture sensor filled in with data from different techniques as described earlier. The 

red line represents filled in gaps. Figure Credit: USDA-ARS Northwest Sustainable Agroecosystems 

Research, at Cook Farm, Washington State University, Department of Crop and Soil Sciences, Pullman, 

Washington Cook Farm. Data compiled by Caley Gasch, under supervision of David Brown, Department 

of Crop and Soil Sciences, Washington State University, Pullman, Washington. 
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