

Current Drought

Recent heavy precipitation in Southern California¹ eliminated drought in the region (Fig. 1). Precipitation for October 1, 2025 to January 18, 2026 was in the upper 20th percentile across all 9 counties, with isolated areas experiencing the wettest such period compared to conditions during 1991-2020.

Winter snow water volumes in the Southwest United States become California's water resources in subsequent months and years. Snow water volumes in the Southwest United States were significantly below average as of January 21, 2026 (Fig. 2) due to below-average precipitation since October 1, 2025 (Fig. 1) and above-average temperatures. Median snow water volume in the Upper Colorado Basin as of January 21, 2026 was the lowest on record since 1991 (Fig. 2) due to record low precipitation in western Colorado (Fig. 1).

Drought Outlook and Predictability

The Southwest United States is expected to experience below-average precipitation and above-average temperatures between February and April 2026 according to [NOAA's Climate Prediction Center](#), which would increase the possibility of low water availability in Southern California.

Sector-Specific Outlooks

Water Utilities

Reservoir storage and groundwater levels are expected to be average or above-average in California through 2026 (high confidence). Low inflows into Lake Powell from the Colorado River are expected this year, which could impact future water supply (high confidence).

Public Health

Poor air quality due to blowing dust in Southern California is expected from March to June 2026 (high confidence). Valley fever cases are expected to rise in spring, summer, and autumn of 2026, given the recent heavy precipitation following drought and spring winds (high confidence). There is a low risk of poor air quality from wildland fire smoke through spring 2026 due to recent precipitation (high confidence).

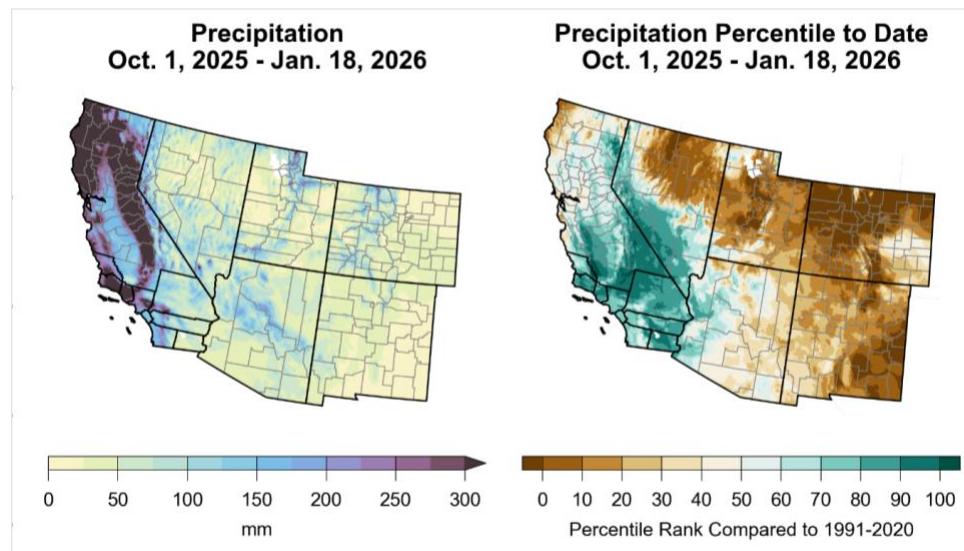
Agriculture



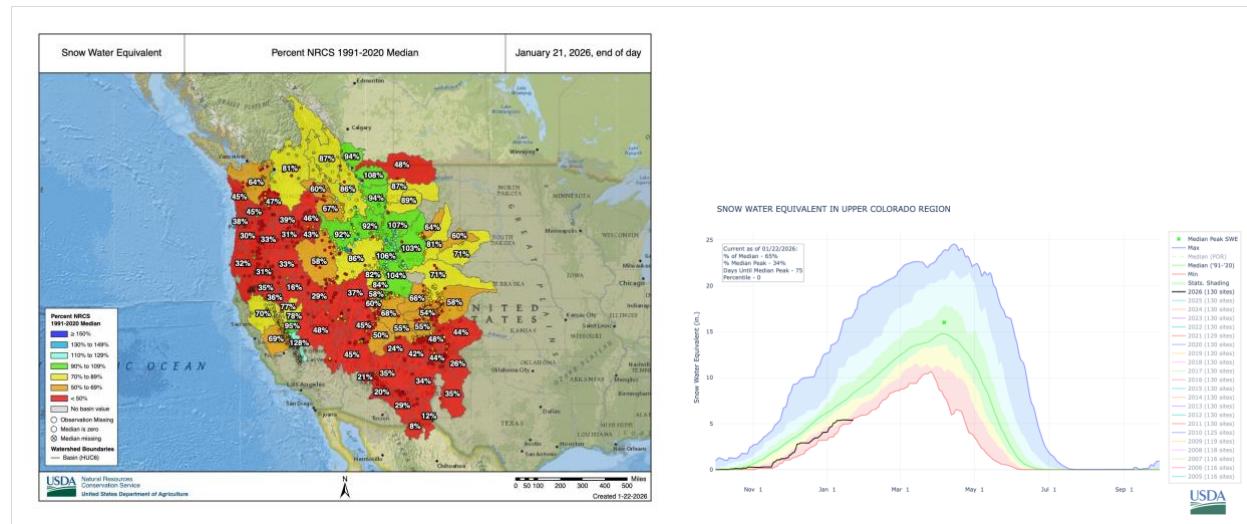
High agricultural productivity is expected based on above-average precipitation and average evaporative demand since November 2025 (high confidence). Crop stress is expected from February 2026 through spring 2026 due to below-average precipitation and above-average evaporative demand (high confidence).

¹ Here, Southern California includes San Luis Obispo, Santa Barbara, Ventura, Los Angeles, San Bernardino, Orange, Riverside, San Diego, and Imperial counties.

NOAA
Physical Sciences
Laboratory



January 2026 Southern California Sector-Specific Drought Outlook Pilot


About the Outlook

This outlook disseminates sector-specific drought scenarios that are based on tailored monitoring and forecasting information, which will enable users to make proactive decisions ahead of drought. The focus sectors include water utilities, agriculture, and public health in Southern California. This outlook uses data available as of January 22, 2026 at 10 a.m. PT unless indicated otherwise.

Several perspectives inform sector-specific drought scenarios, including observations of current conditions and expert interpretation of many types of forecasts to anticipate the future. [View graphics and supporting evidence.](#)

Figure 1. For October 1, 2025 to January 18, 2026, (left) total precipitation in millimeters and (right) precipitation percentile rank compared to 1991-2020. Source: NOAA Physical Sciences Laboratory based on NOAA National Centers for Environmental Information nclimgrid precipitation.

Figure 2. (left) Percent of median snow water volume as of January 21, 2026. (right) Time series of snow water volume since October 1 in inches during 2025-2026 (black line) and historical conditions since 1991-2020, where red indicates the 0-10th percentile, yellow indicates the 10-30th percentile, green indicates the 30-70th percentile, light blue indicates the 70-90th percentile and dark blue indicates the 90-100th percentile.